| //===-- tsan_interface_atomic.cc ------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // ThreadSanitizer atomic operations are based on C++11/C1x standards. |
| // For background see C++11 standard. A slightly older, publically |
| // available draft of the standard (not entirely up-to-date, but close enough |
| // for casual browsing) is available here: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf |
| // The following page contains more background information: |
| // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ |
| |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_stacktrace.h" |
| #include "tsan_interface_atomic.h" |
| #include "tsan_flags.h" |
| #include "tsan_rtl.h" |
| |
| using namespace __tsan; // NOLINT |
| |
| #define SCOPED_ATOMIC(func, ...) \ |
| const uptr callpc = (uptr)__builtin_return_address(0); \ |
| uptr pc = __sanitizer::StackTrace::GetCurrentPc(); \ |
| pc = __sanitizer::StackTrace::GetPreviousInstructionPc(pc); \ |
| mo = ConvertOrder(mo); \ |
| mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \ |
| ThreadState *const thr = cur_thread(); \ |
| AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \ |
| ScopedAtomic sa(thr, callpc, __FUNCTION__); \ |
| return Atomic##func(thr, pc, __VA_ARGS__); \ |
| /**/ |
| |
| class ScopedAtomic { |
| public: |
| ScopedAtomic(ThreadState *thr, uptr pc, const char *func) |
| : thr_(thr) { |
| CHECK_EQ(thr_->in_rtl, 0); |
| ProcessPendingSignals(thr); |
| FuncEntry(thr_, pc); |
| DPrintf("#%d: %s\n", thr_->tid, func); |
| thr_->in_rtl++; |
| } |
| ~ScopedAtomic() { |
| thr_->in_rtl--; |
| CHECK_EQ(thr_->in_rtl, 0); |
| FuncExit(thr_); |
| } |
| private: |
| ThreadState *thr_; |
| }; |
| |
| // Some shortcuts. |
| typedef __tsan_memory_order morder; |
| typedef __tsan_atomic8 a8; |
| typedef __tsan_atomic16 a16; |
| typedef __tsan_atomic32 a32; |
| typedef __tsan_atomic64 a64; |
| typedef __tsan_atomic128 a128; |
| const morder mo_relaxed = __tsan_memory_order_relaxed; |
| const morder mo_consume = __tsan_memory_order_consume; |
| const morder mo_acquire = __tsan_memory_order_acquire; |
| const morder mo_release = __tsan_memory_order_release; |
| const morder mo_acq_rel = __tsan_memory_order_acq_rel; |
| const morder mo_seq_cst = __tsan_memory_order_seq_cst; |
| |
| static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) { |
| StatInc(thr, StatAtomic); |
| StatInc(thr, t); |
| StatInc(thr, size == 1 ? StatAtomic1 |
| : size == 2 ? StatAtomic2 |
| : size == 4 ? StatAtomic4 |
| : size == 8 ? StatAtomic8 |
| : StatAtomic16); |
| StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed |
| : mo == mo_consume ? StatAtomicConsume |
| : mo == mo_acquire ? StatAtomicAcquire |
| : mo == mo_release ? StatAtomicRelease |
| : mo == mo_acq_rel ? StatAtomicAcq_Rel |
| : StatAtomicSeq_Cst); |
| } |
| |
| static bool IsLoadOrder(morder mo) { |
| return mo == mo_relaxed || mo == mo_consume |
| || mo == mo_acquire || mo == mo_seq_cst; |
| } |
| |
| static bool IsStoreOrder(morder mo) { |
| return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst; |
| } |
| |
| static bool IsReleaseOrder(morder mo) { |
| return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst; |
| } |
| |
| static bool IsAcquireOrder(morder mo) { |
| return mo == mo_consume || mo == mo_acquire |
| || mo == mo_acq_rel || mo == mo_seq_cst; |
| } |
| |
| static bool IsAcqRelOrder(morder mo) { |
| return mo == mo_acq_rel || mo == mo_seq_cst; |
| } |
| |
| static morder ConvertOrder(morder mo) { |
| if (mo > (morder)100500) { |
| mo = morder(mo - 100500); |
| if (mo == morder(1 << 0)) |
| mo = mo_relaxed; |
| else if (mo == morder(1 << 1)) |
| mo = mo_consume; |
| else if (mo == morder(1 << 2)) |
| mo = mo_acquire; |
| else if (mo == morder(1 << 3)) |
| mo = mo_release; |
| else if (mo == morder(1 << 4)) |
| mo = mo_acq_rel; |
| else if (mo == morder(1 << 5)) |
| mo = mo_seq_cst; |
| } |
| CHECK_GE(mo, mo_relaxed); |
| CHECK_LE(mo, mo_seq_cst); |
| return mo; |
| } |
| |
| template<typename T> T func_xchg(volatile T *v, T op) { |
| T res = __sync_lock_test_and_set(v, op); |
| // __sync_lock_test_and_set does not contain full barrier. |
| __sync_synchronize(); |
| return res; |
| } |
| |
| template<typename T> T func_add(volatile T *v, T op) { |
| return __sync_fetch_and_add(v, op); |
| } |
| |
| template<typename T> T func_sub(volatile T *v, T op) { |
| return __sync_fetch_and_sub(v, op); |
| } |
| |
| template<typename T> T func_and(volatile T *v, T op) { |
| return __sync_fetch_and_and(v, op); |
| } |
| |
| template<typename T> T func_or(volatile T *v, T op) { |
| return __sync_fetch_and_or(v, op); |
| } |
| |
| template<typename T> T func_xor(volatile T *v, T op) { |
| return __sync_fetch_and_xor(v, op); |
| } |
| |
| template<typename T> T func_nand(volatile T *v, T op) { |
| // clang does not support __sync_fetch_and_nand. |
| T cmp = *v; |
| for (;;) { |
| T newv = ~(cmp & op); |
| T cur = __sync_val_compare_and_swap(v, cmp, newv); |
| if (cmp == cur) |
| return cmp; |
| cmp = cur; |
| } |
| } |
| |
| template<typename T> T func_cas(volatile T *v, T cmp, T xch) { |
| return __sync_val_compare_and_swap(v, cmp, xch); |
| } |
| |
| // clang does not support 128-bit atomic ops. |
| // Atomic ops are executed under tsan internal mutex, |
| // here we assume that the atomic variables are not accessed |
| // from non-instrumented code. |
| #ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16 |
| a128 func_xchg(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = op; |
| return cmp; |
| } |
| |
| a128 func_add(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = cmp + op; |
| return cmp; |
| } |
| |
| a128 func_sub(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = cmp - op; |
| return cmp; |
| } |
| |
| a128 func_and(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = cmp & op; |
| return cmp; |
| } |
| |
| a128 func_or(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = cmp | op; |
| return cmp; |
| } |
| |
| a128 func_xor(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = cmp ^ op; |
| return cmp; |
| } |
| |
| a128 func_nand(volatile a128 *v, a128 op) { |
| a128 cmp = *v; |
| *v = ~(cmp & op); |
| return cmp; |
| } |
| |
| a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) { |
| a128 cur = *v; |
| if (cur == cmp) |
| *v = xch; |
| return cur; |
| } |
| #endif |
| |
| template<typename T> |
| static int SizeLog() { |
| if (sizeof(T) <= 1) |
| return kSizeLog1; |
| else if (sizeof(T) <= 2) |
| return kSizeLog2; |
| else if (sizeof(T) <= 4) |
| return kSizeLog4; |
| else |
| return kSizeLog8; |
| // For 16-byte atomics we also use 8-byte memory access, |
| // this leads to false negatives only in very obscure cases. |
| } |
| |
| template<typename T> |
| static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a, |
| morder mo) { |
| CHECK(IsLoadOrder(mo)); |
| // This fast-path is critical for performance. |
| // Assume the access is atomic. |
| if (!IsAcquireOrder(mo) && sizeof(T) <= sizeof(a)) { |
| MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>()); |
| return *a; |
| } |
| SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, false); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| thr->clock.acquire(&s->clock); |
| T v = *a; |
| s->mtx.ReadUnlock(); |
| __sync_synchronize(); |
| MemoryReadAtomic(thr, pc, (uptr)a, SizeLog<T>()); |
| return v; |
| } |
| |
| template<typename T> |
| static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| CHECK(IsStoreOrder(mo)); |
| MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); |
| // This fast-path is critical for performance. |
| // Assume the access is atomic. |
| // Strictly saying even relaxed store cuts off release sequence, |
| // so must reset the clock. |
| if (!IsReleaseOrder(mo) && sizeof(T) <= sizeof(a)) { |
| *a = v; |
| return; |
| } |
| __sync_synchronize(); |
| SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| thr->clock.ReleaseStore(&s->clock); |
| *a = v; |
| s->mtx.Unlock(); |
| // Trainling memory barrier to provide sequential consistency |
| // for Dekker-like store-load synchronization. |
| __sync_synchronize(); |
| } |
| |
| template<typename T, T (*F)(volatile T *v, T op)> |
| static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) { |
| MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); |
| SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| if (IsAcqRelOrder(mo)) |
| thr->clock.acq_rel(&s->clock); |
| else if (IsReleaseOrder(mo)) |
| thr->clock.release(&s->clock); |
| else if (IsAcquireOrder(mo)) |
| thr->clock.acquire(&s->clock); |
| v = F(a, v); |
| s->mtx.Unlock(); |
| return v; |
| } |
| |
| template<typename T> |
| static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_add>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_sub>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_and>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_or>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_xor>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v, |
| morder mo) { |
| return AtomicRMW<T, func_nand>(thr, pc, a, v, mo); |
| } |
| |
| template<typename T> |
| static bool AtomicCAS(ThreadState *thr, uptr pc, |
| volatile T *a, T *c, T v, morder mo, morder fmo) { |
| (void)fmo; // Unused because llvm does not pass it yet. |
| MemoryWriteAtomic(thr, pc, (uptr)a, SizeLog<T>()); |
| SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| if (IsAcqRelOrder(mo)) |
| thr->clock.acq_rel(&s->clock); |
| else if (IsReleaseOrder(mo)) |
| thr->clock.release(&s->clock); |
| else if (IsAcquireOrder(mo)) |
| thr->clock.acquire(&s->clock); |
| T cc = *c; |
| T pr = func_cas(a, cc, v); |
| s->mtx.Unlock(); |
| if (pr == cc) |
| return true; |
| *c = pr; |
| return false; |
| } |
| |
| template<typename T> |
| static T AtomicCAS(ThreadState *thr, uptr pc, |
| volatile T *a, T c, T v, morder mo, morder fmo) { |
| AtomicCAS(thr, pc, a, &c, v, mo, fmo); |
| return c; |
| } |
| |
| static void AtomicFence(ThreadState *thr, uptr pc, morder mo) { |
| // FIXME(dvyukov): not implemented. |
| __sync_synchronize(); |
| } |
| |
| a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) { |
| SCOPED_ATOMIC(Load, a, mo); |
| } |
| |
| a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) { |
| SCOPED_ATOMIC(Load, a, mo); |
| } |
| |
| a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) { |
| SCOPED_ATOMIC(Load, a, mo); |
| } |
| |
| a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) { |
| SCOPED_ATOMIC(Load, a, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) { |
| SCOPED_ATOMIC(Load, a, mo); |
| } |
| #endif |
| |
| void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(Store, a, v, mo); |
| } |
| |
| void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(Store, a, v, mo); |
| } |
| |
| void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(Store, a, v, mo); |
| } |
| |
| void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(Store, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(Store, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(Exchange, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(Exchange, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(Exchange, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(Exchange, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(Exchange, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchAdd, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchAdd, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchAdd, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchAdd, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchAdd, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchSub, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchSub, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchSub, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchSub, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchSub, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchAnd, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchAnd, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchAnd, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchAnd, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchAnd, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchOr, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchOr, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchOr, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchOr, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchOr, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchXor, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchXor, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchXor, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchXor, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchXor, a, v, mo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) { |
| SCOPED_ATOMIC(FetchNand, a, v, mo); |
| } |
| |
| a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) { |
| SCOPED_ATOMIC(FetchNand, a, v, mo); |
| } |
| |
| a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) { |
| SCOPED_ATOMIC(FetchNand, a, v, mo); |
| } |
| |
| a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) { |
| SCOPED_ATOMIC(FetchNand, a, v, mo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) { |
| SCOPED_ATOMIC(FetchNand, a, v, mo); |
| } |
| #endif |
| |
| int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| #endif |
| |
| int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| #endif |
| |
| a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| |
| #if __TSAN_HAS_INT128 |
| a128 __tsan_atomic64_compare_exchange_val(volatile a128 *a, a128 c, a128 v, |
| morder mo, morder fmo) { |
| SCOPED_ATOMIC(CAS, a, c, v, mo, fmo); |
| } |
| #endif |
| |
| void __tsan_atomic_thread_fence(morder mo) { |
| char* a; |
| SCOPED_ATOMIC(Fence, mo); |
| } |
| |
| void __tsan_atomic_signal_fence(morder mo) { |
| } |