blob: 3288f283b086321c594c44ec750c84ffa814d7e4 [file] [log] [blame]
//===-- asan_allocator2.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator, 2-nd version.
// This variant uses the allocator from sanitizer_common, i.e. the one shared
// with ThreadSanitizer and MemorySanitizer.
//
// Status: under development, not enabled by default yet.
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"
#if ASAN_ALLOCATOR_VERSION == 2
#include "asan_mapping.h"
#include "asan_report.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_list.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_quarantine.h"
namespace __asan {
struct AsanMapUnmapCallback {
void OnMap(uptr p, uptr size) const {
PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.mmaps++;
thread_stats.mmaped += size;
}
void OnUnmap(uptr p, uptr size) const {
PoisonShadow(p, size, 0);
// We are about to unmap a chunk of user memory.
// Mark the corresponding shadow memory as not needed.
// Since asan's mapping is compacting, the shadow chunk may be
// not page-aligned, so we only flush the page-aligned portion.
uptr page_size = GetPageSizeCached();
uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size);
uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size);
FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg);
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.munmaps++;
thread_stats.munmaped += size;
}
};
#if SANITIZER_WORDSIZE == 64
#if defined(__powerpc64__)
const uptr kAllocatorSpace = 0xa0000000000ULL;
#else
const uptr kAllocatorSpace = 0x600000000000ULL;
#endif
const uptr kAllocatorSize = 0x40000000000ULL; // 4T.
typedef DefaultSizeClassMap SizeClassMap;
typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/,
SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#elif SANITIZER_WORDSIZE == 32
static const u64 kAddressSpaceSize = 1ULL << 32;
typedef CompactSizeClassMap SizeClassMap;
typedef SizeClassAllocator32<0, kAddressSpaceSize, 16,
SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator;
#endif
typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
SecondaryAllocator> Allocator;
// We can not use THREADLOCAL because it is not supported on some of the
// platforms we care about (OSX 10.6, Android).
// static THREADLOCAL AllocatorCache cache;
AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache));
return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache);
}
static Allocator allocator;
static const uptr kMaxAllowedMallocSize =
FIRST_32_SECOND_64(3UL << 30, 8UL << 30);
static const uptr kMaxThreadLocalQuarantine =
FIRST_32_SECOND_64(1 << 18, 1 << 20);
// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
enum {
CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it.
CHUNK_ALLOCATED = 2,
CHUNK_QUARANTINE = 3
};
// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
// We use adaptive redzones: for larger allocation larger redzones are used.
static u32 RZLog2Size(u32 rz_log) {
CHECK_LT(rz_log, 8);
return 16 << rz_log;
}
static u32 RZSize2Log(u32 rz_size) {
CHECK_GE(rz_size, 16);
CHECK_LE(rz_size, 2048);
CHECK(IsPowerOfTwo(rz_size));
u32 res = Log2(rz_size) - 4;
CHECK_EQ(rz_size, RZLog2Size(res));
return res;
}
static uptr ComputeRZLog(uptr user_requested_size) {
u32 rz_log =
user_requested_size <= 64 - 16 ? 0 :
user_requested_size <= 128 - 32 ? 1 :
user_requested_size <= 512 - 64 ? 2 :
user_requested_size <= 4096 - 128 ? 3 :
user_requested_size <= (1 << 14) - 256 ? 4 :
user_requested_size <= (1 << 15) - 512 ? 5 :
user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
return Max(rz_log, RZSize2Log(flags()->redzone));
}
// The memory chunk allocated from the underlying allocator looks like this:
// L L L L L L H H U U U U U U R R
// L -- left redzone words (0 or more bytes)
// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
// U -- user memory.
// R -- right redzone (0 or more bytes)
// ChunkBase consists of ChunkHeader and other bytes that overlap with user
// memory.
// If a memory chunk is allocated by memalign and we had to increase the
// allocation size to achieve the proper alignment, then we store this magic
// value in the first uptr word of the memory block and store the address of
// ChunkBase in the next uptr.
// M B ? ? ? L L L L L L H H U U U U U U
// M -- magic value kMemalignMagic
// B -- address of ChunkHeader pointing to the first 'H'
static const uptr kMemalignMagic = 0xCC6E96B9;
struct ChunkHeader {
// 1-st 8 bytes.
u32 chunk_state : 8; // Must be first.
u32 alloc_tid : 24;
u32 free_tid : 24;
u32 from_memalign : 1;
u32 alloc_type : 2;
u32 rz_log : 3;
// 2-nd 8 bytes
// This field is used for small sizes. For large sizes it is equal to
// SizeClassMap::kMaxSize and the actual size is stored in the
// SecondaryAllocator's metadata.
u32 user_requested_size;
u32 alloc_context_id;
};
struct ChunkBase : ChunkHeader {
// Header2, intersects with user memory.
AsanChunk *next;
u32 free_context_id;
};
static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
COMPILER_CHECK(kChunkHeaderSize == 16);
COMPILER_CHECK(kChunkHeader2Size <= 16);
struct AsanChunk: ChunkBase {
uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
uptr UsedSize() {
if (user_requested_size != SizeClassMap::kMaxSize)
return user_requested_size;
return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg()));
}
void *AllocBeg() {
if (from_memalign)
return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
}
// We store the alloc/free stack traces in the chunk itself.
u32 *AllocStackBeg() {
return (u32*)(Beg() - RZLog2Size(rz_log));
}
uptr AllocStackSize() {
CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize);
return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32);
}
u32 *FreeStackBeg() {
return (u32*)(Beg() + kChunkHeader2Size);
}
uptr FreeStackSize() {
if (user_requested_size < kChunkHeader2Size) return 0;
uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY);
return (available - kChunkHeader2Size) / sizeof(u32);
}
};
uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
static void GetStackTraceFromId(u32 id, StackTrace *stack) {
CHECK(id);
uptr size = 0;
const uptr *trace = StackDepotGet(id, &size);
CHECK_LT(size, kStackTraceMax);
internal_memcpy(stack->trace, trace, sizeof(uptr) * size);
stack->size = size;
}
void AsanChunkView::GetAllocStack(StackTrace *stack) {
if (flags()->use_stack_depot)
GetStackTraceFromId(chunk_->alloc_context_id, stack);
else
StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(),
chunk_->AllocStackSize());
}
void AsanChunkView::GetFreeStack(StackTrace *stack) {
if (flags()->use_stack_depot)
GetStackTraceFromId(chunk_->free_context_id, stack);
else
StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(),
chunk_->FreeStackSize());
}
struct QuarantineCallback;
typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
typedef AsanQuarantine::Cache QuarantineCache;
static AsanQuarantine quarantine(LINKER_INITIALIZED);
static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
static AllocatorCache fallback_allocator_cache;
static SpinMutex fallback_mutex;
QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
CHECK(ms);
CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
}
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *cache)
: cache_(cache) {
}
void Recycle(AsanChunk *m) {
CHECK(m->chunk_state == CHUNK_QUARANTINE);
m->chunk_state = CHUNK_AVAILABLE;
CHECK_NE(m->alloc_tid, kInvalidTid);
CHECK_NE(m->free_tid, kInvalidTid);
PoisonShadow(m->Beg(),
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
kAsanHeapLeftRedzoneMagic);
void *p = reinterpret_cast<void *>(m->AllocBeg());
if (m->from_memalign) {
uptr *memalign_magic = reinterpret_cast<uptr *>(p);
CHECK_EQ(memalign_magic[0], kMemalignMagic);
CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m));
}
// Statistics.
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.real_frees++;
thread_stats.really_freed += m->UsedSize();
allocator.Deallocate(cache_, p);
}
void *Allocate(uptr size) {
return allocator.Allocate(cache_, size, 1, false);
}
void Deallocate(void *p) {
allocator.Deallocate(cache_, p);
}
AllocatorCache *cache_;
};
void InitializeAllocator() {
allocator.Init();
quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine);
}
static void *Allocate(uptr size, uptr alignment, StackTrace *stack,
AllocType alloc_type) {
if (!asan_inited)
__asan_init();
CHECK(stack);
const uptr min_alignment = SHADOW_GRANULARITY;
if (alignment < min_alignment)
alignment = min_alignment;
if (size == 0) {
// We'd be happy to avoid allocating memory for zero-size requests, but
// some programs/tests depend on this behavior and assume that malloc would
// not return NULL even for zero-size allocations. Moreover, it looks like
// operator new should never return NULL, and results of consecutive "new"
// calls must be different even if the allocated size is zero.
size = 1;
}
CHECK(IsPowerOfTwo(alignment));
uptr rz_log = ComputeRZLog(size);
uptr rz_size = RZLog2Size(rz_log);
uptr rounded_size = RoundUpTo(size, alignment);
if (rounded_size < kChunkHeader2Size)
rounded_size = kChunkHeader2Size;
uptr needed_size = rounded_size + rz_size;
if (alignment > min_alignment)
needed_size += alignment;
bool using_primary_allocator = true;
// If we are allocating from the secondary allocator, there will be no
// automatic right redzone, so add the right redzone manually.
if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
needed_size += rz_size;
using_primary_allocator = false;
}
CHECK(IsAligned(needed_size, min_alignment));
if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
(void*)size);
return 0;
}
AsanThread *t = asanThreadRegistry().GetCurrent();
void *allocated;
if (t) {
AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
allocated = allocator.Allocate(cache, needed_size, 8, false);
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *cache = &fallback_allocator_cache;
allocated = allocator.Allocate(cache, needed_size, 8, false);
}
uptr alloc_beg = reinterpret_cast<uptr>(allocated);
// Clear the first allocated word (an old kMemalignMagic may still be there).
reinterpret_cast<uptr *>(alloc_beg)[0] = 0;
uptr alloc_end = alloc_beg + needed_size;
uptr beg_plus_redzone = alloc_beg + rz_size;
uptr user_beg = beg_plus_redzone;
if (!IsAligned(user_beg, alignment))
user_beg = RoundUpTo(user_beg, alignment);
uptr user_end = user_beg + size;
CHECK_LE(user_end, alloc_end);
uptr chunk_beg = user_beg - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
m->chunk_state = CHUNK_ALLOCATED;
m->alloc_type = alloc_type;
m->rz_log = rz_log;
u32 alloc_tid = t ? t->tid() : 0;
m->alloc_tid = alloc_tid;
CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield?
m->free_tid = kInvalidTid;
m->from_memalign = user_beg != beg_plus_redzone;
if (m->from_memalign) {
CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg);
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
memalign_magic[0] = kMemalignMagic;
memalign_magic[1] = chunk_beg;
}
if (using_primary_allocator) {
CHECK(size);
m->user_requested_size = size;
CHECK(allocator.FromPrimary(allocated));
} else {
CHECK(!allocator.FromPrimary(allocated));
m->user_requested_size = SizeClassMap::kMaxSize;
uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
meta[0] = size;
meta[1] = chunk_beg;
}
if (flags()->use_stack_depot) {
m->alloc_context_id = StackDepotPut(stack->trace, stack->size);
} else {
m->alloc_context_id = 0;
StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize());
}
uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
// Unpoison the bulk of the memory region.
if (size_rounded_down_to_granularity)
PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
// Deal with the end of the region if size is not aligned to granularity.
if (size != size_rounded_down_to_granularity && flags()->poison_heap) {
u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
*shadow = size & (SHADOW_GRANULARITY - 1);
}
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.mallocs++;
thread_stats.malloced += size;
thread_stats.malloced_redzones += needed_size - size;
uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
thread_stats.malloced_by_size[class_id]++;
if (needed_size > SizeClassMap::kMaxSize)
thread_stats.malloc_large++;
void *res = reinterpret_cast<void *>(user_beg);
ASAN_MALLOC_HOOK(res, size);
return res;
}
static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) {
uptr p = reinterpret_cast<uptr>(ptr);
if (p == 0) return;
ASAN_FREE_HOOK(ptr);
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
// Flip the chunk_state atomically to avoid race on double-free.
u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
memory_order_relaxed);
if (old_chunk_state == CHUNK_QUARANTINE)
ReportDoubleFree((uptr)ptr, stack);
else if (old_chunk_state != CHUNK_ALLOCATED)
ReportFreeNotMalloced((uptr)ptr, stack);
CHECK(old_chunk_state == CHUNK_ALLOCATED);
if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
ReportAllocTypeMismatch((uptr)ptr, stack,
(AllocType)m->alloc_type, (AllocType)alloc_type);
CHECK_GE(m->alloc_tid, 0);
if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area.
CHECK_EQ(m->free_tid, kInvalidTid);
AsanThread *t = asanThreadRegistry().GetCurrent();
m->free_tid = t ? t->tid() : 0;
if (flags()->use_stack_depot) {
m->free_context_id = StackDepotPut(stack->trace, stack->size);
} else {
m->free_context_id = 0;
StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize());
}
CHECK(m->chunk_state == CHUNK_QUARANTINE);
// Poison the region.
PoisonShadow(m->Beg(),
RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
kAsanHeapFreeMagic);
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.frees++;
thread_stats.freed += m->UsedSize();
// Push into quarantine.
if (t) {
AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
AllocatorCache *ac = GetAllocatorCache(ms);
quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
m, m->UsedSize());
} else {
SpinMutexLock l(&fallback_mutex);
AllocatorCache *ac = &fallback_allocator_cache;
quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
m, m->UsedSize());
}
}
static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) {
CHECK(old_ptr && new_size);
uptr p = reinterpret_cast<uptr>(old_ptr);
uptr chunk_beg = p - kChunkHeaderSize;
AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
thread_stats.reallocs++;
thread_stats.realloced += new_size;
CHECK(m->chunk_state == CHUNK_ALLOCATED);
uptr old_size = m->UsedSize();
uptr memcpy_size = Min(new_size, old_size);
void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
if (new_ptr) {
CHECK_NE(REAL(memcpy), (void*)0);
REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
Deallocate(old_ptr, stack, FROM_MALLOC);
}
return new_ptr;
}
static AsanChunk *GetAsanChunkByAddr(uptr p) {
void *ptr = reinterpret_cast<void *>(p);
uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr));
if (!alloc_beg) return 0;
uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg);
if (memalign_magic[0] == kMemalignMagic) {
AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]);
CHECK(m->from_memalign);
return m;
}
if (!allocator.FromPrimary(ptr)) {
uptr *meta = reinterpret_cast<uptr *>(
allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg)));
AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
return m;
}
uptr actual_size = allocator.GetActuallyAllocatedSize(ptr);
CHECK_LE(actual_size, SizeClassMap::kMaxSize);
// We know the actually allocted size, but we don't know the redzone size.
// Just try all possible redzone sizes.
for (u32 rz_log = 0; rz_log < 8; rz_log++) {
u32 rz_size = RZLog2Size(rz_log);
uptr max_possible_size = actual_size - rz_size;
if (ComputeRZLog(max_possible_size) != rz_log)
continue;
return reinterpret_cast<AsanChunk *>(
alloc_beg + rz_size - kChunkHeaderSize);
}
return 0;
}
static uptr AllocationSize(uptr p) {
AsanChunk *m = GetAsanChunkByAddr(p);
if (!m) return 0;
if (m->chunk_state != CHUNK_ALLOCATED) return 0;
if (m->Beg() != p) return 0;
return m->UsedSize();
}
// We have an address between two chunks, and we want to report just one.
AsanChunk *ChooseChunk(uptr addr,
AsanChunk *left_chunk, AsanChunk *right_chunk) {
// Prefer an allocated chunk over freed chunk and freed chunk
// over available chunk.
if (left_chunk->chunk_state != right_chunk->chunk_state) {
if (left_chunk->chunk_state == CHUNK_ALLOCATED)
return left_chunk;
if (right_chunk->chunk_state == CHUNK_ALLOCATED)
return right_chunk;
if (left_chunk->chunk_state == CHUNK_QUARANTINE)
return left_chunk;
if (right_chunk->chunk_state == CHUNK_QUARANTINE)
return right_chunk;
}
// Same chunk_state: choose based on offset.
sptr l_offset = 0, r_offset = 0;
CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
if (l_offset < r_offset)
return left_chunk;
return right_chunk;
}
AsanChunkView FindHeapChunkByAddress(uptr addr) {
AsanChunk *m1 = GetAsanChunkByAddr(addr);
if (!m1) return AsanChunkView(m1);
sptr offset = 0;
if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
// The address is in the chunk's left redzone, so maybe it is actually
// a right buffer overflow from the other chunk to the left.
// Search a bit to the left to see if there is another chunk.
AsanChunk *m2 = 0;
for (uptr l = 1; l < GetPageSizeCached(); l++) {
m2 = GetAsanChunkByAddr(addr - l);
if (m2 == m1) continue; // Still the same chunk.
break;
}
if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
m1 = ChooseChunk(addr, m2, m1);
}
return AsanChunkView(m1);
}
void AsanThreadLocalMallocStorage::CommitBack() {
AllocatorCache *ac = GetAllocatorCache(this);
quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
allocator.SwallowCache(GetAllocatorCache(this));
}
void PrintInternalAllocatorStats() {
allocator.PrintStats();
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_memalign(uptr alignment, uptr size, StackTrace *stack,
AllocType alloc_type) {
return Allocate(size, alignment, stack, alloc_type);
}
SANITIZER_INTERFACE_ATTRIBUTE
void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) {
Deallocate(ptr, stack, alloc_type);
}
SANITIZER_INTERFACE_ATTRIBUTE
void *asan_malloc(uptr size, StackTrace *stack) {
return Allocate(size, 8, stack, FROM_MALLOC);
}
void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0;
void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
// If the memory comes from the secondary allocator no need to clear it
// as it comes directly from mmap.
if (ptr && allocator.FromPrimary(ptr))
REAL(memset)(ptr, 0, nmemb * size);
return ptr;
}
void *asan_realloc(void *p, uptr size, StackTrace *stack) {
if (p == 0)
return Allocate(size, 8, stack, FROM_MALLOC);
if (size == 0) {
Deallocate(p, stack, FROM_MALLOC);
return 0;
}
return Reallocate(p, size, stack);
}
void *asan_valloc(uptr size, StackTrace *stack) {
return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC);
}
void *asan_pvalloc(uptr size, StackTrace *stack) {
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = PageSize;
}
return Allocate(size, PageSize, stack, FROM_MALLOC);
}
int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
StackTrace *stack) {
void *ptr = Allocate(size, alignment, stack, FROM_MALLOC);
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
CHECK(stack);
if (ptr == 0) return 0;
uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
if (flags()->check_malloc_usable_size && (usable_size == 0))
ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
return usable_size;
}
uptr asan_mz_size(const void *ptr) {
return AllocationSize(reinterpret_cast<uptr>(ptr));
}
void asan_mz_force_lock() {
allocator.ForceLock();
fallback_mutex.Lock();
}
void asan_mz_force_unlock() {
fallback_mutex.Unlock();
allocator.ForceUnlock();
}
} // namespace __asan
// ---------------------- Interface ---------------- {{{1
using namespace __asan; // NOLINT
// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size". We don't want to expose our redzone sizes, etc here.
uptr __asan_get_estimated_allocated_size(uptr size) {
return size;
}
bool __asan_get_ownership(const void *p) {
uptr ptr = reinterpret_cast<uptr>(p);
return (AllocationSize(ptr) > 0);
}
uptr __asan_get_allocated_size(const void *p) {
if (p == 0) return 0;
uptr ptr = reinterpret_cast<uptr>(p);
uptr allocated_size = AllocationSize(ptr);
// Die if p is not malloced or if it is already freed.
if (allocated_size == 0) {
GET_STACK_TRACE_FATAL_HERE;
ReportAsanGetAllocatedSizeNotOwned(ptr, &stack);
}
return allocated_size;
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_free_hook(void *ptr) {
(void)ptr;
}
} // extern "C"
#endif
#endif // ASAN_ALLOCATOR_VERSION