| //===-- asan_allocator2.cc ------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of AddressSanitizer, an address sanity checker. |
| // |
| // Implementation of ASan's memory allocator, 2-nd version. |
| // This variant uses the allocator from sanitizer_common, i.e. the one shared |
| // with ThreadSanitizer and MemorySanitizer. |
| // |
| // Status: under development, not enabled by default yet. |
| //===----------------------------------------------------------------------===// |
| #include "asan_allocator.h" |
| #if ASAN_ALLOCATOR_VERSION == 2 |
| |
| #include "asan_mapping.h" |
| #include "asan_report.h" |
| #include "asan_thread.h" |
| #include "asan_thread_registry.h" |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "sanitizer_common/sanitizer_internal_defs.h" |
| #include "sanitizer_common/sanitizer_list.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_quarantine.h" |
| |
| namespace __asan { |
| |
| struct AsanMapUnmapCallback { |
| void OnMap(uptr p, uptr size) const { |
| PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); |
| // Statistics. |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.mmaps++; |
| thread_stats.mmaped += size; |
| } |
| void OnUnmap(uptr p, uptr size) const { |
| PoisonShadow(p, size, 0); |
| // We are about to unmap a chunk of user memory. |
| // Mark the corresponding shadow memory as not needed. |
| // Since asan's mapping is compacting, the shadow chunk may be |
| // not page-aligned, so we only flush the page-aligned portion. |
| uptr page_size = GetPageSizeCached(); |
| uptr shadow_beg = RoundUpTo(MemToShadow(p), page_size); |
| uptr shadow_end = RoundDownTo(MemToShadow(p + size), page_size); |
| FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); |
| // Statistics. |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.munmaps++; |
| thread_stats.munmaped += size; |
| } |
| }; |
| |
| #if SANITIZER_WORDSIZE == 64 |
| #if defined(__powerpc64__) |
| const uptr kAllocatorSpace = 0xa0000000000ULL; |
| #else |
| const uptr kAllocatorSpace = 0x600000000000ULL; |
| #endif |
| const uptr kAllocatorSize = 0x10000000000ULL; // 1T. |
| typedef DefaultSizeClassMap SizeClassMap; |
| typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, 0 /*metadata*/, |
| SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator; |
| #elif SANITIZER_WORDSIZE == 32 |
| static const u64 kAddressSpaceSize = 1ULL << 32; |
| typedef CompactSizeClassMap SizeClassMap; |
| typedef SizeClassAllocator32<0, kAddressSpaceSize, 16, |
| SizeClassMap, AsanMapUnmapCallback> PrimaryAllocator; |
| #endif |
| |
| typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; |
| typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator; |
| typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, |
| SecondaryAllocator> Allocator; |
| |
| // We can not use THREADLOCAL because it is not supported on some of the |
| // platforms we care about (OSX 10.6, Android). |
| // static THREADLOCAL AllocatorCache cache; |
| AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { |
| CHECK(ms); |
| CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator2_cache)); |
| return reinterpret_cast<AllocatorCache *>(ms->allocator2_cache); |
| } |
| |
| static Allocator allocator; |
| |
| static const uptr kMaxAllowedMallocSize = |
| FIRST_32_SECOND_64(3UL << 30, 8UL << 30); |
| |
| static const uptr kMaxThreadLocalQuarantine = |
| FIRST_32_SECOND_64(1 << 18, 1 << 20); |
| |
| // Every chunk of memory allocated by this allocator can be in one of 3 states: |
| // CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated. |
| // CHUNK_ALLOCATED: the chunk is allocated and not yet freed. |
| // CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone. |
| enum { |
| CHUNK_AVAILABLE = 0, // 0 is the default value even if we didn't set it. |
| CHUNK_ALLOCATED = 2, |
| CHUNK_QUARANTINE = 3 |
| }; |
| |
| // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. |
| // We use adaptive redzones: for larger allocation larger redzones are used. |
| static u32 RZLog2Size(u32 rz_log) { |
| CHECK_LT(rz_log, 8); |
| return 16 << rz_log; |
| } |
| |
| static u32 RZSize2Log(u32 rz_size) { |
| CHECK_GE(rz_size, 16); |
| CHECK_LE(rz_size, 2048); |
| CHECK(IsPowerOfTwo(rz_size)); |
| u32 res = Log2(rz_size) - 4; |
| CHECK_EQ(rz_size, RZLog2Size(res)); |
| return res; |
| } |
| |
| static uptr ComputeRZLog(uptr user_requested_size) { |
| u32 rz_log = |
| user_requested_size <= 64 - 16 ? 0 : |
| user_requested_size <= 128 - 32 ? 1 : |
| user_requested_size <= 512 - 64 ? 2 : |
| user_requested_size <= 4096 - 128 ? 3 : |
| user_requested_size <= (1 << 14) - 256 ? 4 : |
| user_requested_size <= (1 << 15) - 512 ? 5 : |
| user_requested_size <= (1 << 16) - 1024 ? 6 : 7; |
| return Max(rz_log, RZSize2Log(flags()->redzone)); |
| } |
| |
| // The memory chunk allocated from the underlying allocator looks like this: |
| // L L L L L L H H U U U U U U R R |
| // L -- left redzone words (0 or more bytes) |
| // H -- ChunkHeader (16 bytes), which is also a part of the left redzone. |
| // U -- user memory. |
| // R -- right redzone (0 or more bytes) |
| // ChunkBase consists of ChunkHeader and other bytes that overlap with user |
| // memory. |
| |
| // If a memory chunk is allocated by memalign and we had to increase the |
| // allocation size to achieve the proper alignment, then we store this magic |
| // value in the first uptr word of the memory block and store the address of |
| // ChunkBase in the next uptr. |
| // M B ? ? ? L L L L L L H H U U U U U U |
| // M -- magic value kMemalignMagic |
| // B -- address of ChunkHeader pointing to the first 'H' |
| static const uptr kMemalignMagic = 0xCC6E96B9; |
| |
| struct ChunkHeader { |
| // 1-st 8 bytes. |
| u32 chunk_state : 8; // Must be first. |
| u32 alloc_tid : 24; |
| |
| u32 free_tid : 24; |
| u32 from_memalign : 1; |
| u32 alloc_type : 2; |
| u32 rz_log : 3; |
| // 2-nd 8 bytes |
| // This field is used for small sizes. For large sizes it is equal to |
| // SizeClassMap::kMaxSize and the actual size is stored in the |
| // SecondaryAllocator's metadata. |
| u32 user_requested_size; |
| u32 alloc_context_id; |
| }; |
| |
| struct ChunkBase : ChunkHeader { |
| // Header2, intersects with user memory. |
| AsanChunk *next; |
| u32 free_context_id; |
| }; |
| |
| static const uptr kChunkHeaderSize = sizeof(ChunkHeader); |
| static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; |
| COMPILER_CHECK(kChunkHeaderSize == 16); |
| COMPILER_CHECK(kChunkHeader2Size <= 16); |
| |
| struct AsanChunk: ChunkBase { |
| uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } |
| uptr UsedSize() { |
| if (user_requested_size != SizeClassMap::kMaxSize) |
| return user_requested_size; |
| return *reinterpret_cast<uptr *>(allocator.GetMetaData(AllocBeg())); |
| } |
| void *AllocBeg() { |
| if (from_memalign) |
| return allocator.GetBlockBegin(reinterpret_cast<void *>(this)); |
| return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log)); |
| } |
| // We store the alloc/free stack traces in the chunk itself. |
| u32 *AllocStackBeg() { |
| return (u32*)(Beg() - RZLog2Size(rz_log)); |
| } |
| uptr AllocStackSize() { |
| CHECK_LE(RZLog2Size(rz_log), kChunkHeaderSize); |
| return (RZLog2Size(rz_log) - kChunkHeaderSize) / sizeof(u32); |
| } |
| u32 *FreeStackBeg() { |
| return (u32*)(Beg() + kChunkHeader2Size); |
| } |
| uptr FreeStackSize() { |
| if (user_requested_size < kChunkHeader2Size) return 0; |
| uptr available = RoundUpTo(user_requested_size, SHADOW_GRANULARITY); |
| return (available - kChunkHeader2Size) / sizeof(u32); |
| } |
| }; |
| |
| uptr AsanChunkView::Beg() { return chunk_->Beg(); } |
| uptr AsanChunkView::End() { return Beg() + UsedSize(); } |
| uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); } |
| uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; } |
| uptr AsanChunkView::FreeTid() { return chunk_->free_tid; } |
| |
| static void GetStackTraceFromId(u32 id, StackTrace *stack) { |
| CHECK(id); |
| uptr size = 0; |
| const uptr *trace = StackDepotGet(id, &size); |
| CHECK_LT(size, kStackTraceMax); |
| internal_memcpy(stack->trace, trace, sizeof(uptr) * size); |
| stack->size = size; |
| } |
| |
| void AsanChunkView::GetAllocStack(StackTrace *stack) { |
| if (flags()->use_stack_depot) |
| GetStackTraceFromId(chunk_->alloc_context_id, stack); |
| else |
| StackTrace::UncompressStack(stack, chunk_->AllocStackBeg(), |
| chunk_->AllocStackSize()); |
| } |
| |
| void AsanChunkView::GetFreeStack(StackTrace *stack) { |
| if (flags()->use_stack_depot) |
| GetStackTraceFromId(chunk_->free_context_id, stack); |
| else |
| StackTrace::UncompressStack(stack, chunk_->FreeStackBeg(), |
| chunk_->FreeStackSize()); |
| } |
| |
| struct QuarantineCallback; |
| typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; |
| typedef AsanQuarantine::Cache QuarantineCache; |
| static AsanQuarantine quarantine(LINKER_INITIALIZED); |
| static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED); |
| static AllocatorCache fallback_allocator_cache; |
| static SpinMutex fallback_mutex; |
| |
| QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { |
| CHECK(ms); |
| CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); |
| return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); |
| } |
| |
| struct QuarantineCallback { |
| explicit QuarantineCallback(AllocatorCache *cache) |
| : cache_(cache) { |
| } |
| |
| void Recycle(AsanChunk *m) { |
| CHECK(m->chunk_state == CHUNK_QUARANTINE); |
| m->chunk_state = CHUNK_AVAILABLE; |
| CHECK_NE(m->alloc_tid, kInvalidTid); |
| CHECK_NE(m->free_tid, kInvalidTid); |
| PoisonShadow(m->Beg(), |
| RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), |
| kAsanHeapLeftRedzoneMagic); |
| void *p = reinterpret_cast<void *>(m->AllocBeg()); |
| if (m->from_memalign) { |
| uptr *memalign_magic = reinterpret_cast<uptr *>(p); |
| CHECK_EQ(memalign_magic[0], kMemalignMagic); |
| CHECK_EQ(memalign_magic[1], reinterpret_cast<uptr>(m)); |
| } |
| |
| // Statistics. |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.real_frees++; |
| thread_stats.really_freed += m->UsedSize(); |
| |
| allocator.Deallocate(cache_, p); |
| } |
| |
| void *Allocate(uptr size) { |
| return allocator.Allocate(cache_, size, 1, false); |
| } |
| |
| void Deallocate(void *p) { |
| allocator.Deallocate(cache_, p); |
| } |
| |
| AllocatorCache *cache_; |
| }; |
| |
| void InitializeAllocator() { |
| allocator.Init(); |
| quarantine.Init((uptr)flags()->quarantine_size, kMaxThreadLocalQuarantine); |
| } |
| |
| static void *Allocate(uptr size, uptr alignment, StackTrace *stack, |
| AllocType alloc_type) { |
| if (!asan_inited) |
| __asan_init(); |
| CHECK(stack); |
| const uptr min_alignment = SHADOW_GRANULARITY; |
| if (alignment < min_alignment) |
| alignment = min_alignment; |
| if (size == 0) { |
| // We'd be happy to avoid allocating memory for zero-size requests, but |
| // some programs/tests depend on this behavior and assume that malloc would |
| // not return NULL even for zero-size allocations. Moreover, it looks like |
| // operator new should never return NULL, and results of consecutive "new" |
| // calls must be different even if the allocated size is zero. |
| size = 1; |
| } |
| CHECK(IsPowerOfTwo(alignment)); |
| uptr rz_log = ComputeRZLog(size); |
| uptr rz_size = RZLog2Size(rz_log); |
| uptr rounded_size = RoundUpTo(size, alignment); |
| if (rounded_size < kChunkHeader2Size) |
| rounded_size = kChunkHeader2Size; |
| uptr needed_size = rounded_size + rz_size; |
| if (alignment > min_alignment) |
| needed_size += alignment; |
| bool using_primary_allocator = true; |
| // If we are allocating from the secondary allocator, there will be no |
| // automatic right redzone, so add the right redzone manually. |
| if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) { |
| needed_size += rz_size; |
| using_primary_allocator = false; |
| } |
| CHECK(IsAligned(needed_size, min_alignment)); |
| if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) { |
| Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", |
| (void*)size); |
| return 0; |
| } |
| |
| AsanThread *t = asanThreadRegistry().GetCurrent(); |
| void *allocated; |
| if (t) { |
| AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); |
| allocated = allocator.Allocate(cache, needed_size, 8, false); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *cache = &fallback_allocator_cache; |
| allocated = allocator.Allocate(cache, needed_size, 8, false); |
| } |
| uptr alloc_beg = reinterpret_cast<uptr>(allocated); |
| // Clear the first allocated word (an old kMemalignMagic may still be there). |
| reinterpret_cast<uptr *>(alloc_beg)[0] = 0; |
| uptr alloc_end = alloc_beg + needed_size; |
| uptr beg_plus_redzone = alloc_beg + rz_size; |
| uptr user_beg = beg_plus_redzone; |
| if (!IsAligned(user_beg, alignment)) |
| user_beg = RoundUpTo(user_beg, alignment); |
| uptr user_end = user_beg + size; |
| CHECK_LE(user_end, alloc_end); |
| uptr chunk_beg = user_beg - kChunkHeaderSize; |
| AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| m->chunk_state = CHUNK_ALLOCATED; |
| m->alloc_type = alloc_type; |
| m->rz_log = rz_log; |
| u32 alloc_tid = t ? t->tid() : 0; |
| m->alloc_tid = alloc_tid; |
| CHECK_EQ(alloc_tid, m->alloc_tid); // Does alloc_tid fit into the bitfield? |
| m->free_tid = kInvalidTid; |
| m->from_memalign = user_beg != beg_plus_redzone; |
| if (m->from_memalign) { |
| CHECK_LE(beg_plus_redzone + 2 * sizeof(uptr), user_beg); |
| uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg); |
| memalign_magic[0] = kMemalignMagic; |
| memalign_magic[1] = chunk_beg; |
| } |
| if (using_primary_allocator) { |
| CHECK(size); |
| m->user_requested_size = size; |
| CHECK(allocator.FromPrimary(allocated)); |
| } else { |
| CHECK(!allocator.FromPrimary(allocated)); |
| m->user_requested_size = SizeClassMap::kMaxSize; |
| uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated)); |
| meta[0] = size; |
| meta[1] = chunk_beg; |
| } |
| |
| if (flags()->use_stack_depot) { |
| m->alloc_context_id = StackDepotPut(stack->trace, stack->size); |
| } else { |
| m->alloc_context_id = 0; |
| StackTrace::CompressStack(stack, m->AllocStackBeg(), m->AllocStackSize()); |
| } |
| |
| uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY); |
| // Unpoison the bulk of the memory region. |
| if (size_rounded_down_to_granularity) |
| PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); |
| // Deal with the end of the region if size is not aligned to granularity. |
| if (size != size_rounded_down_to_granularity && flags()->poison_heap) { |
| u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity); |
| *shadow = size & (SHADOW_GRANULARITY - 1); |
| } |
| |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.mallocs++; |
| thread_stats.malloced += size; |
| thread_stats.malloced_redzones += needed_size - size; |
| uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size)); |
| thread_stats.malloced_by_size[class_id]++; |
| if (needed_size > SizeClassMap::kMaxSize) |
| thread_stats.malloc_large++; |
| |
| void *res = reinterpret_cast<void *>(user_beg); |
| ASAN_MALLOC_HOOK(res, size); |
| return res; |
| } |
| |
| static void Deallocate(void *ptr, StackTrace *stack, AllocType alloc_type) { |
| uptr p = reinterpret_cast<uptr>(ptr); |
| if (p == 0) return; |
| ASAN_FREE_HOOK(ptr); |
| uptr chunk_beg = p - kChunkHeaderSize; |
| AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| |
| // Flip the chunk_state atomically to avoid race on double-free. |
| u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE, |
| memory_order_relaxed); |
| |
| if (old_chunk_state == CHUNK_QUARANTINE) |
| ReportDoubleFree((uptr)ptr, stack); |
| else if (old_chunk_state != CHUNK_ALLOCATED) |
| ReportFreeNotMalloced((uptr)ptr, stack); |
| CHECK(old_chunk_state == CHUNK_ALLOCATED); |
| if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch) |
| ReportAllocTypeMismatch((uptr)ptr, stack, |
| (AllocType)m->alloc_type, (AllocType)alloc_type); |
| |
| CHECK_GE(m->alloc_tid, 0); |
| if (SANITIZER_WORDSIZE == 64) // On 32-bits this resides in user area. |
| CHECK_EQ(m->free_tid, kInvalidTid); |
| AsanThread *t = asanThreadRegistry().GetCurrent(); |
| m->free_tid = t ? t->tid() : 0; |
| if (flags()->use_stack_depot) { |
| m->free_context_id = StackDepotPut(stack->trace, stack->size); |
| } else { |
| m->free_context_id = 0; |
| StackTrace::CompressStack(stack, m->FreeStackBeg(), m->FreeStackSize()); |
| } |
| CHECK(m->chunk_state == CHUNK_QUARANTINE); |
| // Poison the region. |
| PoisonShadow(m->Beg(), |
| RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY), |
| kAsanHeapFreeMagic); |
| |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.frees++; |
| thread_stats.freed += m->UsedSize(); |
| |
| // Push into quarantine. |
| if (t) { |
| AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); |
| AllocatorCache *ac = GetAllocatorCache(ms); |
| quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac), |
| m, m->UsedSize()); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *ac = &fallback_allocator_cache; |
| quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac), |
| m, m->UsedSize()); |
| } |
| } |
| |
| static void *Reallocate(void *old_ptr, uptr new_size, StackTrace *stack) { |
| CHECK(old_ptr && new_size); |
| uptr p = reinterpret_cast<uptr>(old_ptr); |
| uptr chunk_beg = p - kChunkHeaderSize; |
| AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); |
| |
| AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats(); |
| thread_stats.reallocs++; |
| thread_stats.realloced += new_size; |
| |
| CHECK(m->chunk_state == CHUNK_ALLOCATED); |
| uptr old_size = m->UsedSize(); |
| uptr memcpy_size = Min(new_size, old_size); |
| void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); |
| if (new_ptr) { |
| CHECK_NE(REAL(memcpy), (void*)0); |
| REAL(memcpy)(new_ptr, old_ptr, memcpy_size); |
| Deallocate(old_ptr, stack, FROM_MALLOC); |
| } |
| return new_ptr; |
| } |
| |
| static AsanChunk *GetAsanChunkByAddr(uptr p) { |
| void *ptr = reinterpret_cast<void *>(p); |
| uptr alloc_beg = reinterpret_cast<uptr>(allocator.GetBlockBegin(ptr)); |
| if (!alloc_beg) return 0; |
| uptr *memalign_magic = reinterpret_cast<uptr *>(alloc_beg); |
| if (memalign_magic[0] == kMemalignMagic) { |
| AsanChunk *m = reinterpret_cast<AsanChunk *>(memalign_magic[1]); |
| CHECK(m->from_memalign); |
| return m; |
| } |
| if (!allocator.FromPrimary(ptr)) { |
| uptr *meta = reinterpret_cast<uptr *>( |
| allocator.GetMetaData(reinterpret_cast<void *>(alloc_beg))); |
| AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]); |
| return m; |
| } |
| uptr actual_size = allocator.GetActuallyAllocatedSize(ptr); |
| CHECK_LE(actual_size, SizeClassMap::kMaxSize); |
| // We know the actually allocted size, but we don't know the redzone size. |
| // Just try all possible redzone sizes. |
| for (u32 rz_log = 0; rz_log < 8; rz_log++) { |
| u32 rz_size = RZLog2Size(rz_log); |
| uptr max_possible_size = actual_size - rz_size; |
| if (ComputeRZLog(max_possible_size) != rz_log) |
| continue; |
| return reinterpret_cast<AsanChunk *>( |
| alloc_beg + rz_size - kChunkHeaderSize); |
| } |
| return 0; |
| } |
| |
| static uptr AllocationSize(uptr p) { |
| AsanChunk *m = GetAsanChunkByAddr(p); |
| if (!m) return 0; |
| if (m->chunk_state != CHUNK_ALLOCATED) return 0; |
| if (m->Beg() != p) return 0; |
| return m->UsedSize(); |
| } |
| |
| // We have an address between two chunks, and we want to report just one. |
| AsanChunk *ChooseChunk(uptr addr, |
| AsanChunk *left_chunk, AsanChunk *right_chunk) { |
| // Prefer an allocated chunk over freed chunk and freed chunk |
| // over available chunk. |
| if (left_chunk->chunk_state != right_chunk->chunk_state) { |
| if (left_chunk->chunk_state == CHUNK_ALLOCATED) |
| return left_chunk; |
| if (right_chunk->chunk_state == CHUNK_ALLOCATED) |
| return right_chunk; |
| if (left_chunk->chunk_state == CHUNK_QUARANTINE) |
| return left_chunk; |
| if (right_chunk->chunk_state == CHUNK_QUARANTINE) |
| return right_chunk; |
| } |
| // Same chunk_state: choose based on offset. |
| sptr l_offset = 0, r_offset = 0; |
| CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); |
| CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); |
| if (l_offset < r_offset) |
| return left_chunk; |
| return right_chunk; |
| } |
| |
| AsanChunkView FindHeapChunkByAddress(uptr addr) { |
| AsanChunk *m1 = GetAsanChunkByAddr(addr); |
| if (!m1) return AsanChunkView(m1); |
| sptr offset = 0; |
| if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { |
| // The address is in the chunk's left redzone, so maybe it is actually |
| // a right buffer overflow from the other chunk to the left. |
| // Search a bit to the left to see if there is another chunk. |
| AsanChunk *m2 = 0; |
| for (uptr l = 1; l < GetPageSizeCached(); l++) { |
| m2 = GetAsanChunkByAddr(addr - l); |
| if (m2 == m1) continue; // Still the same chunk. |
| break; |
| } |
| if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) |
| m1 = ChooseChunk(addr, m2, m1); |
| } |
| return AsanChunkView(m1); |
| } |
| |
| void AsanThreadLocalMallocStorage::CommitBack() { |
| AllocatorCache *ac = GetAllocatorCache(this); |
| quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac)); |
| allocator.SwallowCache(GetAllocatorCache(this)); |
| } |
| |
| void PrintInternalAllocatorStats() { |
| allocator.PrintStats(); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void *asan_memalign(uptr alignment, uptr size, StackTrace *stack, |
| AllocType alloc_type) { |
| return Allocate(size, alignment, stack, alloc_type); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void asan_free(void *ptr, StackTrace *stack, AllocType alloc_type) { |
| Deallocate(ptr, stack, alloc_type); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void *asan_malloc(uptr size, StackTrace *stack) { |
| return Allocate(size, 8, stack, FROM_MALLOC); |
| } |
| |
| void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) { |
| if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return 0; |
| void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); |
| // If the memory comes from the secondary allocator no need to clear it |
| // as it comes directly from mmap. |
| if (ptr && allocator.FromPrimary(ptr)) |
| REAL(memset)(ptr, 0, nmemb * size); |
| return ptr; |
| } |
| |
| void *asan_realloc(void *p, uptr size, StackTrace *stack) { |
| if (p == 0) |
| return Allocate(size, 8, stack, FROM_MALLOC); |
| if (size == 0) { |
| Deallocate(p, stack, FROM_MALLOC); |
| return 0; |
| } |
| return Reallocate(p, size, stack); |
| } |
| |
| void *asan_valloc(uptr size, StackTrace *stack) { |
| return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC); |
| } |
| |
| void *asan_pvalloc(uptr size, StackTrace *stack) { |
| uptr PageSize = GetPageSizeCached(); |
| size = RoundUpTo(size, PageSize); |
| if (size == 0) { |
| // pvalloc(0) should allocate one page. |
| size = PageSize; |
| } |
| return Allocate(size, PageSize, stack, FROM_MALLOC); |
| } |
| |
| int asan_posix_memalign(void **memptr, uptr alignment, uptr size, |
| StackTrace *stack) { |
| void *ptr = Allocate(size, alignment, stack, FROM_MALLOC); |
| CHECK(IsAligned((uptr)ptr, alignment)); |
| *memptr = ptr; |
| return 0; |
| } |
| |
| uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) { |
| CHECK(stack); |
| if (ptr == 0) return 0; |
| uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr)); |
| if (flags()->check_malloc_usable_size && (usable_size == 0)) |
| ReportMallocUsableSizeNotOwned((uptr)ptr, stack); |
| return usable_size; |
| } |
| |
| uptr asan_mz_size(const void *ptr) { |
| return AllocationSize(reinterpret_cast<uptr>(ptr)); |
| } |
| |
| void asan_mz_force_lock() { |
| allocator.ForceLock(); |
| fallback_mutex.Lock(); |
| } |
| |
| void asan_mz_force_unlock() { |
| fallback_mutex.Unlock(); |
| allocator.ForceUnlock(); |
| } |
| |
| } // namespace __asan |
| |
| // ---------------------- Interface ---------------- {{{1 |
| using namespace __asan; // NOLINT |
| |
| // ASan allocator doesn't reserve extra bytes, so normally we would |
| // just return "size". We don't want to expose our redzone sizes, etc here. |
| uptr __asan_get_estimated_allocated_size(uptr size) { |
| return size; |
| } |
| |
| bool __asan_get_ownership(const void *p) { |
| uptr ptr = reinterpret_cast<uptr>(p); |
| return (AllocationSize(ptr) > 0); |
| } |
| |
| uptr __asan_get_allocated_size(const void *p) { |
| if (p == 0) return 0; |
| uptr ptr = reinterpret_cast<uptr>(p); |
| uptr allocated_size = AllocationSize(ptr); |
| // Die if p is not malloced or if it is already freed. |
| if (allocated_size == 0) { |
| GET_STACK_TRACE_FATAL_HERE; |
| ReportAsanGetAllocatedSizeNotOwned(ptr, &stack); |
| } |
| return allocated_size; |
| } |
| |
| #if !SANITIZER_SUPPORTS_WEAK_HOOKS |
| // Provide default (no-op) implementation of malloc hooks. |
| extern "C" { |
| SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE |
| void __asan_malloc_hook(void *ptr, uptr size) { |
| (void)ptr; |
| (void)size; |
| } |
| SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE |
| void __asan_free_hook(void *ptr) { |
| (void)ptr; |
| } |
| } // extern "C" |
| #endif |
| |
| |
| #endif // ASAN_ALLOCATOR_VERSION |