| //===-- tsan_rtl.cc -------------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Main file (entry points) for the TSan run-time. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_atomic.h" |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_stackdepot.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_symbolizer.h" |
| #include "tsan_defs.h" |
| #include "tsan_platform.h" |
| #include "tsan_rtl.h" |
| #include "tsan_mman.h" |
| #include "tsan_suppressions.h" |
| |
| volatile int __tsan_resumed = 0; |
| |
| extern "C" void __tsan_resume() { |
| __tsan_resumed = 1; |
| } |
| |
| namespace __tsan { |
| |
| #ifndef TSAN_GO |
| THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64); |
| #endif |
| static char ctx_placeholder[sizeof(Context)] ALIGNED(64); |
| |
| // Can be overriden by a front-end. |
| bool CPP_WEAK OnFinalize(bool failed) { |
| return failed; |
| } |
| |
| static Context *ctx; |
| Context *CTX() { |
| return ctx; |
| } |
| |
| static char thread_registry_placeholder[sizeof(ThreadRegistry)]; |
| |
| static ThreadContextBase *CreateThreadContext(u32 tid) { |
| // Map thread trace when context is created. |
| MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event)); |
| void *mem = MmapOrDie(sizeof(ThreadContext), "ThreadContext"); |
| return new(mem) ThreadContext(tid); |
| } |
| |
| #ifndef TSAN_GO |
| static const u32 kThreadQuarantineSize = 16; |
| #else |
| static const u32 kThreadQuarantineSize = 64; |
| #endif |
| |
| Context::Context() |
| : initialized() |
| , report_mtx(MutexTypeReport, StatMtxReport) |
| , nreported() |
| , nmissed_expected() |
| , thread_registry(new(thread_registry_placeholder) ThreadRegistry( |
| CreateThreadContext, kMaxTid, kThreadQuarantineSize)) |
| , racy_stacks(MBlockRacyStacks) |
| , racy_addresses(MBlockRacyAddresses) |
| , fired_suppressions(MBlockRacyAddresses) { |
| } |
| |
| // The objects are allocated in TLS, so one may rely on zero-initialization. |
| ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, |
| uptr stk_addr, uptr stk_size, |
| uptr tls_addr, uptr tls_size) |
| : fast_state(tid, epoch) |
| // Do not touch these, rely on zero initialization, |
| // they may be accessed before the ctor. |
| // , fast_ignore_reads() |
| // , fast_ignore_writes() |
| // , in_rtl() |
| , shadow_stack_pos(&shadow_stack[0]) |
| , tid(tid) |
| , unique_id(unique_id) |
| , stk_addr(stk_addr) |
| , stk_size(stk_size) |
| , tls_addr(tls_addr) |
| , tls_size(tls_size) { |
| } |
| |
| static void MemoryProfileThread(void *arg) { |
| ScopedInRtl in_rtl; |
| fd_t fd = (fd_t)(uptr)arg; |
| Context *ctx = CTX(); |
| for (int i = 0; ; i++) { |
| InternalScopedBuffer<char> buf(4096); |
| uptr n_threads; |
| uptr n_running_threads; |
| ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads); |
| internal_snprintf(buf.data(), buf.size(), "%d: nthr=%d nlive=%d\n", |
| i, n_threads, n_running_threads); |
| internal_write(fd, buf.data(), internal_strlen(buf.data())); |
| WriteMemoryProfile(buf.data(), buf.size()); |
| internal_write(fd, buf.data(), internal_strlen(buf.data())); |
| SleepForSeconds(1); |
| } |
| } |
| |
| static void InitializeMemoryProfile() { |
| if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0) |
| return; |
| InternalScopedBuffer<char> filename(4096); |
| internal_snprintf(filename.data(), filename.size(), "%s.%d", |
| flags()->profile_memory, GetPid()); |
| fd_t fd = OpenFile(filename.data(), true); |
| if (fd == kInvalidFd) { |
| Printf("Failed to open memory profile file '%s'\n", &filename[0]); |
| Die(); |
| } |
| internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd); |
| } |
| |
| void DontNeedShadowFor(uptr addr, uptr size) { |
| uptr shadow_beg = MemToShadow(addr); |
| uptr shadow_end = MemToShadow(addr + size); |
| FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); |
| } |
| |
| static void MemoryFlushThread(void *arg) { |
| ScopedInRtl in_rtl; |
| for (int i = 0; ; i++) { |
| SleepForMillis(flags()->flush_memory_ms); |
| FlushShadowMemory(); |
| } |
| } |
| |
| static void InitializeMemoryFlush() { |
| if (flags()->flush_memory_ms == 0) |
| return; |
| if (flags()->flush_memory_ms < 100) |
| flags()->flush_memory_ms = 100; |
| internal_start_thread(&MemoryFlushThread, 0); |
| } |
| |
| void MapShadow(uptr addr, uptr size) { |
| MmapFixedNoReserve(MemToShadow(addr), size * kShadowMultiplier); |
| } |
| |
| void MapThreadTrace(uptr addr, uptr size) { |
| DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size); |
| CHECK_GE(addr, kTraceMemBegin); |
| CHECK_LE(addr + size, kTraceMemBegin + kTraceMemSize); |
| if (addr != (uptr)MmapFixedNoReserve(addr, size)) { |
| Printf("FATAL: ThreadSanitizer can not mmap thread trace\n"); |
| Die(); |
| } |
| } |
| |
| void Initialize(ThreadState *thr) { |
| // Thread safe because done before all threads exist. |
| static bool is_initialized = false; |
| if (is_initialized) |
| return; |
| is_initialized = true; |
| SanitizerToolName = "ThreadSanitizer"; |
| // Install tool-specific callbacks in sanitizer_common. |
| SetCheckFailedCallback(TsanCheckFailed); |
| |
| ScopedInRtl in_rtl; |
| #ifndef TSAN_GO |
| InitializeAllocator(); |
| #endif |
| InitializeInterceptors(); |
| const char *env = InitializePlatform(); |
| InitializeMutex(); |
| InitializeDynamicAnnotations(); |
| ctx = new(ctx_placeholder) Context; |
| #ifndef TSAN_GO |
| InitializeShadowMemory(); |
| #endif |
| InitializeFlags(&ctx->flags, env); |
| // Setup correct file descriptor for error reports. |
| if (internal_strcmp(flags()->log_path, "stdout") == 0) |
| __sanitizer_set_report_fd(kStdoutFd); |
| else if (internal_strcmp(flags()->log_path, "stderr") == 0) |
| __sanitizer_set_report_fd(kStderrFd); |
| else |
| __sanitizer_set_report_path(flags()->log_path); |
| InitializeSuppressions(); |
| #ifndef TSAN_GO |
| // Initialize external symbolizer before internal threads are started. |
| const char *external_symbolizer = flags()->external_symbolizer_path; |
| if (external_symbolizer != 0 && external_symbolizer[0] != '\0') { |
| if (!InitializeExternalSymbolizer(external_symbolizer)) { |
| Printf("Failed to start external symbolizer: '%s'\n", |
| external_symbolizer); |
| Die(); |
| } |
| } |
| #endif |
| InitializeMemoryProfile(); |
| InitializeMemoryFlush(); |
| |
| if (ctx->flags.verbosity) |
| Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n", |
| GetPid()); |
| |
| // Initialize thread 0. |
| int tid = ThreadCreate(thr, 0, 0, true); |
| CHECK_EQ(tid, 0); |
| ThreadStart(thr, tid, GetPid()); |
| CHECK_EQ(thr->in_rtl, 1); |
| ctx->initialized = true; |
| |
| if (flags()->stop_on_start) { |
| Printf("ThreadSanitizer is suspended at startup (pid %d)." |
| " Call __tsan_resume().\n", |
| GetPid()); |
| while (__tsan_resumed == 0) {} |
| } |
| } |
| |
| int Finalize(ThreadState *thr) { |
| ScopedInRtl in_rtl; |
| Context *ctx = __tsan::ctx; |
| bool failed = false; |
| |
| if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1) |
| SleepForMillis(flags()->atexit_sleep_ms); |
| |
| // Wait for pending reports. |
| ctx->report_mtx.Lock(); |
| ctx->report_mtx.Unlock(); |
| |
| #ifndef TSAN_GO |
| if (ctx->flags.verbosity) |
| AllocatorPrintStats(); |
| #endif |
| |
| ThreadFinalize(thr); |
| |
| if (ctx->nreported) { |
| failed = true; |
| #ifndef TSAN_GO |
| Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported); |
| #else |
| Printf("Found %d data race(s)\n", ctx->nreported); |
| #endif |
| } |
| |
| if (ctx->nmissed_expected) { |
| failed = true; |
| Printf("ThreadSanitizer: missed %d expected races\n", |
| ctx->nmissed_expected); |
| } |
| |
| failed = OnFinalize(failed); |
| |
| StatAggregate(ctx->stat, thr->stat); |
| StatOutput(ctx->stat); |
| return failed ? flags()->exitcode : 0; |
| } |
| |
| #ifndef TSAN_GO |
| u32 CurrentStackId(ThreadState *thr, uptr pc) { |
| if (thr->shadow_stack_pos == 0) // May happen during bootstrap. |
| return 0; |
| if (pc) { |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| u32 id = StackDepotPut(thr->shadow_stack, |
| thr->shadow_stack_pos - thr->shadow_stack); |
| if (pc) |
| thr->shadow_stack_pos--; |
| return id; |
| } |
| #endif |
| |
| void TraceSwitch(ThreadState *thr) { |
| thr->nomalloc++; |
| ScopedInRtl in_rtl; |
| Lock l(&thr->trace.mtx); |
| unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts(); |
| TraceHeader *hdr = &thr->trace.headers[trace]; |
| hdr->epoch0 = thr->fast_state.epoch(); |
| hdr->stack0.ObtainCurrent(thr, 0); |
| hdr->mset0 = thr->mset; |
| thr->nomalloc--; |
| } |
| |
| uptr TraceTopPC(ThreadState *thr) { |
| Event *events = (Event*)GetThreadTrace(thr->tid); |
| uptr pc = events[thr->fast_state.GetTracePos()]; |
| return pc; |
| } |
| |
| uptr TraceSize() { |
| return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1)); |
| } |
| |
| uptr TraceParts() { |
| return TraceSize() / kTracePartSize; |
| } |
| |
| #ifndef TSAN_GO |
| extern "C" void __tsan_trace_switch() { |
| TraceSwitch(cur_thread()); |
| } |
| |
| extern "C" void __tsan_report_race() { |
| ReportRace(cur_thread()); |
| } |
| #endif |
| |
| ALWAYS_INLINE |
| static Shadow LoadShadow(u64 *p) { |
| u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed); |
| return Shadow(raw); |
| } |
| |
| ALWAYS_INLINE |
| static void StoreShadow(u64 *sp, u64 s) { |
| atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed); |
| } |
| |
| ALWAYS_INLINE |
| static void StoreIfNotYetStored(u64 *sp, u64 *s) { |
| StoreShadow(sp, *s); |
| *s = 0; |
| } |
| |
| static inline void HandleRace(ThreadState *thr, u64 *shadow_mem, |
| Shadow cur, Shadow old) { |
| thr->racy_state[0] = cur.raw(); |
| thr->racy_state[1] = old.raw(); |
| thr->racy_shadow_addr = shadow_mem; |
| #ifndef TSAN_GO |
| HACKY_CALL(__tsan_report_race); |
| #else |
| ReportRace(thr); |
| #endif |
| } |
| |
| static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) { |
| return old.epoch() >= thr->fast_synch_epoch; |
| } |
| |
| static inline bool HappensBefore(Shadow old, ThreadState *thr) { |
| return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); |
| } |
| |
| ALWAYS_INLINE |
| void MemoryAccessImpl(ThreadState *thr, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, |
| u64 *shadow_mem, Shadow cur) { |
| StatInc(thr, StatMop); |
| StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead); |
| StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog)); |
| |
| // This potentially can live in an MMX/SSE scratch register. |
| // The required intrinsics are: |
| // __m128i _mm_move_epi64(__m128i*); |
| // _mm_storel_epi64(u64*, __m128i); |
| u64 store_word = cur.raw(); |
| |
| // scan all the shadow values and dispatch to 4 categories: |
| // same, replace, candidate and race (see comments below). |
| // we consider only 3 cases regarding access sizes: |
| // equal, intersect and not intersect. initially I considered |
| // larger and smaller as well, it allowed to replace some |
| // 'candidates' with 'same' or 'replace', but I think |
| // it's just not worth it (performance- and complexity-wise). |
| |
| Shadow old(0); |
| if (kShadowCnt == 1) { |
| int idx = 0; |
| #include "tsan_update_shadow_word_inl.h" |
| } else if (kShadowCnt == 2) { |
| int idx = 0; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 1; |
| #include "tsan_update_shadow_word_inl.h" |
| } else if (kShadowCnt == 4) { |
| int idx = 0; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 1; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 2; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 3; |
| #include "tsan_update_shadow_word_inl.h" |
| } else if (kShadowCnt == 8) { |
| int idx = 0; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 1; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 2; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 3; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 4; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 5; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 6; |
| #include "tsan_update_shadow_word_inl.h" |
| idx = 7; |
| #include "tsan_update_shadow_word_inl.h" |
| } else { |
| CHECK(false); |
| } |
| |
| // we did not find any races and had already stored |
| // the current access info, so we are done |
| if (LIKELY(store_word == 0)) |
| return; |
| // choose a random candidate slot and replace it |
| StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); |
| StatInc(thr, StatShadowReplace); |
| return; |
| RACE: |
| HandleRace(thr, shadow_mem, cur, old); |
| return; |
| } |
| |
| ALWAYS_INLINE |
| void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) { |
| u64 *shadow_mem = (u64*)MemToShadow(addr); |
| DPrintf2("#%d: MemoryAccess: @%p %p size=%d" |
| " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", |
| (int)thr->fast_state.tid(), (void*)pc, (void*)addr, |
| (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, |
| (uptr)shadow_mem[0], (uptr)shadow_mem[1], |
| (uptr)shadow_mem[2], (uptr)shadow_mem[3]); |
| #if TSAN_DEBUG |
| if (!IsAppMem(addr)) { |
| Printf("Access to non app mem %zx\n", addr); |
| DCHECK(IsAppMem(addr)); |
| } |
| if (!IsShadowMem((uptr)shadow_mem)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); |
| DCHECK(IsShadowMem((uptr)shadow_mem)); |
| } |
| #endif |
| |
| FastState fast_state = thr->fast_state; |
| if (fast_state.GetIgnoreBit()) |
| return; |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| Shadow cur(fast_state); |
| cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); |
| cur.SetWrite(kAccessIsWrite); |
| cur.SetAtomic(kIsAtomic); |
| |
| // We must not store to the trace if we do not store to the shadow. |
| // That is, this call must be moved somewhere below. |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, |
| shadow_mem, cur); |
| } |
| |
| static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| u64 val) { |
| (void)thr; |
| (void)pc; |
| if (size == 0) |
| return; |
| // FIXME: fix me. |
| uptr offset = addr % kShadowCell; |
| if (offset) { |
| offset = kShadowCell - offset; |
| if (size <= offset) |
| return; |
| addr += offset; |
| size -= offset; |
| } |
| DCHECK_EQ(addr % 8, 0); |
| // If a user passes some insane arguments (memset(0)), |
| // let it just crash as usual. |
| if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) |
| return; |
| // Don't want to touch lots of shadow memory. |
| // If a program maps 10MB stack, there is no need reset the whole range. |
| size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); |
| if (size < 64*1024) { |
| u64 *p = (u64*)MemToShadow(addr); |
| CHECK(IsShadowMem((uptr)p)); |
| CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1))); |
| // FIXME: may overwrite a part outside the region |
| for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { |
| p[i++] = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| p[i++] = 0; |
| } |
| } else { |
| // The region is big, reset only beginning and end. |
| const uptr kPageSize = 4096; |
| u64 *begin = (u64*)MemToShadow(addr); |
| u64 *end = begin + size / kShadowCell * kShadowCnt; |
| u64 *p = begin; |
| // Set at least first kPageSize/2 to page boundary. |
| while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| *p++ = 0; |
| } |
| // Reset middle part. |
| u64 *p1 = p; |
| p = RoundDown(end, kPageSize); |
| UnmapOrDie((void*)p1, (uptr)p - (uptr)p1); |
| MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1); |
| // Set the ending. |
| while (p < end) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) |
| *p++ = 0; |
| } |
| } |
| } |
| |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| MemoryRangeSet(thr, pc, addr, size, 0); |
| } |
| |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| // Processing more than 1k (4k of shadow) is expensive, |
| // can cause excessive memory consumption (user does not necessary touch |
| // the whole range) and most likely unnecessary. |
| if (size > 1024) |
| size = 1024; |
| CHECK_EQ(thr->is_freeing, false); |
| thr->is_freeing = true; |
| MemoryAccessRange(thr, pc, addr, size, true); |
| thr->is_freeing = false; |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.MarkAsFreed(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| ALWAYS_INLINE |
| void FuncEntry(ThreadState *thr, uptr pc) { |
| DCHECK_EQ(thr->in_rtl, 0); |
| StatInc(thr, StatFuncEnter); |
| DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc); |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc); |
| |
| // Shadow stack maintenance can be replaced with |
| // stack unwinding during trace switch (which presumably must be faster). |
| DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]); |
| #ifndef TSAN_GO |
| DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); |
| #else |
| if (thr->shadow_stack_pos == thr->shadow_stack_end) { |
| const int sz = thr->shadow_stack_end - thr->shadow_stack; |
| const int newsz = 2 * sz; |
| uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack, |
| newsz * sizeof(uptr)); |
| internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr)); |
| internal_free(thr->shadow_stack); |
| thr->shadow_stack = newstack; |
| thr->shadow_stack_pos = newstack + sz; |
| thr->shadow_stack_end = newstack + newsz; |
| } |
| #endif |
| thr->shadow_stack_pos[0] = pc; |
| thr->shadow_stack_pos++; |
| } |
| |
| ALWAYS_INLINE |
| void FuncExit(ThreadState *thr) { |
| DCHECK_EQ(thr->in_rtl, 0); |
| StatInc(thr, StatFuncExit); |
| DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid()); |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0); |
| |
| DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]); |
| #ifndef TSAN_GO |
| DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]); |
| #endif |
| thr->shadow_stack_pos--; |
| } |
| |
| void IgnoreCtl(ThreadState *thr, bool write, bool begin) { |
| DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin); |
| thr->ignore_reads_and_writes += begin ? 1 : -1; |
| CHECK_GE(thr->ignore_reads_and_writes, 0); |
| if (thr->ignore_reads_and_writes) |
| thr->fast_state.SetIgnoreBit(); |
| else |
| thr->fast_state.ClearIgnoreBit(); |
| } |
| |
| bool MD5Hash::operator==(const MD5Hash &other) const { |
| return hash[0] == other.hash[0] && hash[1] == other.hash[1]; |
| } |
| |
| #if TSAN_DEBUG |
| void build_consistency_debug() {} |
| #else |
| void build_consistency_release() {} |
| #endif |
| |
| #if TSAN_COLLECT_STATS |
| void build_consistency_stats() {} |
| #else |
| void build_consistency_nostats() {} |
| #endif |
| |
| #if TSAN_SHADOW_COUNT == 1 |
| void build_consistency_shadow1() {} |
| #elif TSAN_SHADOW_COUNT == 2 |
| void build_consistency_shadow2() {} |
| #elif TSAN_SHADOW_COUNT == 4 |
| void build_consistency_shadow4() {} |
| #else |
| void build_consistency_shadow8() {} |
| #endif |
| |
| } // namespace __tsan |
| |
| #ifndef TSAN_GO |
| // Must be included in this file to make sure everything is inlined. |
| #include "tsan_interface_inl.h" |
| #endif |