| //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Main internal TSan header file. |
| // |
| // Ground rules: |
| // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static |
| // function-scope locals) |
| // - All functions/classes/etc reside in namespace __tsan, except for those |
| // declared in tsan_interface.h. |
| // - Platform-specific files should be used instead of ifdefs (*). |
| // - No system headers included in header files (*). |
| // - Platform specific headres included only into platform-specific files (*). |
| // |
| // (*) Except when inlining is critical for performance. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef TSAN_RTL_H |
| #define TSAN_RTL_H |
| |
| #include "sanitizer_common/sanitizer_common.h" |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "tsan_clock.h" |
| #include "tsan_defs.h" |
| #include "tsan_flags.h" |
| #include "tsan_sync.h" |
| #include "tsan_trace.h" |
| #include "tsan_vector.h" |
| #include "tsan_report.h" |
| #include "tsan_platform.h" |
| #include "tsan_mutexset.h" |
| |
| #if SANITIZER_WORDSIZE != 64 |
| # error "ThreadSanitizer is supported only on 64-bit platforms" |
| #endif |
| |
| namespace __tsan { |
| |
| // Descriptor of user's memory block. |
| struct MBlock { |
| Mutex mtx; |
| uptr size; |
| u32 alloc_tid; |
| u32 alloc_stack_id; |
| SyncVar *head; |
| |
| MBlock() |
| : mtx(MutexTypeMBlock, StatMtxMBlock) { |
| } |
| }; |
| |
| #ifndef TSAN_GO |
| #if defined(TSAN_COMPAT_SHADOW) && TSAN_COMPAT_SHADOW |
| const uptr kAllocatorSpace = 0x7d0000000000ULL; |
| #else |
| const uptr kAllocatorSpace = 0x7d0000000000ULL; |
| #endif |
| const uptr kAllocatorSize = 0x10000000000ULL; // 1T. |
| |
| struct TsanMapUnmapCallback { |
| void OnMap(uptr p, uptr size) const { } |
| void OnUnmap(uptr p, uptr size) const { |
| // We are about to unmap a chunk of user memory. |
| // Mark the corresponding shadow memory as not needed. |
| uptr shadow_beg = MemToShadow(p); |
| uptr shadow_end = MemToShadow(p + size); |
| CHECK(IsAligned(shadow_end|shadow_beg, GetPageSizeCached())); |
| FlushUnneededShadowMemory(shadow_beg, shadow_end - shadow_beg); |
| } |
| }; |
| |
| typedef SizeClassAllocator64<kAllocatorSpace, kAllocatorSize, sizeof(MBlock), |
| DefaultSizeClassMap> PrimaryAllocator; |
| typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache; |
| typedef LargeMmapAllocator<TsanMapUnmapCallback> SecondaryAllocator; |
| typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, |
| SecondaryAllocator> Allocator; |
| Allocator *allocator(); |
| #endif |
| |
| void TsanCheckFailed(const char *file, int line, const char *cond, |
| u64 v1, u64 v2); |
| |
| // FastState (from most significant bit): |
| // ignore : 1 |
| // tid : kTidBits |
| // epoch : kClkBits |
| // unused : - |
| // history_size : 3 |
| class FastState { |
| public: |
| FastState(u64 tid, u64 epoch) { |
| x_ = tid << kTidShift; |
| x_ |= epoch << kClkShift; |
| DCHECK_EQ(tid, this->tid()); |
| DCHECK_EQ(epoch, this->epoch()); |
| DCHECK_EQ(GetIgnoreBit(), false); |
| } |
| |
| explicit FastState(u64 x) |
| : x_(x) { |
| } |
| |
| u64 raw() const { |
| return x_; |
| } |
| |
| u64 tid() const { |
| u64 res = (x_ & ~kIgnoreBit) >> kTidShift; |
| return res; |
| } |
| |
| u64 TidWithIgnore() const { |
| u64 res = x_ >> kTidShift; |
| return res; |
| } |
| |
| u64 epoch() const { |
| u64 res = (x_ << (kTidBits + 1)) >> (64 - kClkBits); |
| return res; |
| } |
| |
| void IncrementEpoch() { |
| u64 old_epoch = epoch(); |
| x_ += 1 << kClkShift; |
| DCHECK_EQ(old_epoch + 1, epoch()); |
| (void)old_epoch; |
| } |
| |
| void SetIgnoreBit() { x_ |= kIgnoreBit; } |
| void ClearIgnoreBit() { x_ &= ~kIgnoreBit; } |
| bool GetIgnoreBit() const { return (s64)x_ < 0; } |
| |
| void SetHistorySize(int hs) { |
| CHECK_GE(hs, 0); |
| CHECK_LE(hs, 7); |
| x_ = (x_ & ~7) | hs; |
| } |
| |
| int GetHistorySize() const { |
| return (int)(x_ & 7); |
| } |
| |
| void ClearHistorySize() { |
| x_ &= ~7; |
| } |
| |
| u64 GetTracePos() const { |
| const int hs = GetHistorySize(); |
| // When hs == 0, the trace consists of 2 parts. |
| const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1; |
| return epoch() & mask; |
| } |
| |
| private: |
| friend class Shadow; |
| static const int kTidShift = 64 - kTidBits - 1; |
| static const int kClkShift = kTidShift - kClkBits; |
| static const u64 kIgnoreBit = 1ull << 63; |
| static const u64 kFreedBit = 1ull << 63; |
| u64 x_; |
| }; |
| |
| // Shadow (from most significant bit): |
| // freed : 1 |
| // tid : kTidBits |
| // epoch : kClkBits |
| // is_atomic : 1 |
| // is_read : 1 |
| // size_log : 2 |
| // addr0 : 3 |
| class Shadow : public FastState { |
| public: |
| explicit Shadow(u64 x) |
| : FastState(x) { |
| } |
| |
| explicit Shadow(const FastState &s) |
| : FastState(s.x_) { |
| ClearHistorySize(); |
| } |
| |
| void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) { |
| DCHECK_EQ(x_ & 31, 0); |
| DCHECK_LE(addr0, 7); |
| DCHECK_LE(kAccessSizeLog, 3); |
| x_ |= (kAccessSizeLog << 3) | addr0; |
| DCHECK_EQ(kAccessSizeLog, size_log()); |
| DCHECK_EQ(addr0, this->addr0()); |
| } |
| |
| void SetWrite(unsigned kAccessIsWrite) { |
| DCHECK_EQ(x_ & kReadBit, 0); |
| if (!kAccessIsWrite) |
| x_ |= kReadBit; |
| DCHECK_EQ(kAccessIsWrite, IsWrite()); |
| } |
| |
| void SetAtomic(bool kIsAtomic) { |
| DCHECK(!IsAtomic()); |
| if (kIsAtomic) |
| x_ |= kAtomicBit; |
| DCHECK_EQ(IsAtomic(), kIsAtomic); |
| } |
| |
| bool IsAtomic() const { |
| return x_ & kAtomicBit; |
| } |
| |
| bool IsZero() const { |
| return x_ == 0; |
| } |
| |
| static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) { |
| u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift; |
| DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore()); |
| return shifted_xor == 0; |
| } |
| |
| static inline bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) { |
| u64 masked_xor = (s1.x_ ^ s2.x_) & 31; |
| return masked_xor == 0; |
| } |
| |
| static inline bool TwoRangesIntersect(Shadow s1, Shadow s2, |
| unsigned kS2AccessSize) { |
| bool res = false; |
| u64 diff = s1.addr0() - s2.addr0(); |
| if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT |
| // if (s1.addr0() + size1) > s2.addr0()) return true; |
| if (s1.size() > -diff) res = true; |
| } else { |
| // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true; |
| if (kS2AccessSize > diff) res = true; |
| } |
| DCHECK_EQ(res, TwoRangesIntersectSLOW(s1, s2)); |
| DCHECK_EQ(res, TwoRangesIntersectSLOW(s2, s1)); |
| return res; |
| } |
| |
| // The idea behind the offset is as follows. |
| // Consider that we have 8 bool's contained within a single 8-byte block |
| // (mapped to a single shadow "cell"). Now consider that we write to the bools |
| // from a single thread (which we consider the common case). |
| // W/o offsetting each access will have to scan 4 shadow values at average |
| // to find the corresponding shadow value for the bool. |
| // With offsetting we start scanning shadow with the offset so that |
| // each access hits necessary shadow straight off (at least in an expected |
| // optimistic case). |
| // This logic works seamlessly for any layout of user data. For example, |
| // if user data is {int, short, char, char}, then accesses to the int are |
| // offsetted to 0, short - 4, 1st char - 6, 2nd char - 7. Hopefully, accesses |
| // from a single thread won't need to scan all 8 shadow values. |
| unsigned ComputeSearchOffset() { |
| return x_ & 7; |
| } |
| u64 addr0() const { return x_ & 7; } |
| u64 size() const { return 1ull << size_log(); } |
| bool IsWrite() const { return !IsRead(); } |
| bool IsRead() const { return x_ & kReadBit; } |
| |
| // The idea behind the freed bit is as follows. |
| // When the memory is freed (or otherwise unaccessible) we write to the shadow |
| // values with tid/epoch related to the free and the freed bit set. |
| // During memory accesses processing the freed bit is considered |
| // as msb of tid. So any access races with shadow with freed bit set |
| // (it is as if write from a thread with which we never synchronized before). |
| // This allows us to detect accesses to freed memory w/o additional |
| // overheads in memory access processing and at the same time restore |
| // tid/epoch of free. |
| void MarkAsFreed() { |
| x_ |= kFreedBit; |
| } |
| |
| bool IsFreed() const { |
| return x_ & kFreedBit; |
| } |
| |
| bool GetFreedAndReset() { |
| bool res = x_ & kFreedBit; |
| x_ &= ~kFreedBit; |
| return res; |
| } |
| |
| bool IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const { |
| // analyzes 5-th bit (is_read) and 6-th bit (is_atomic) |
| bool v = x_ & u64(((kIsWrite ^ 1) << kReadShift) |
| | (kIsAtomic << kAtomicShift)); |
| DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic)); |
| return v; |
| } |
| |
| bool IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const { |
| bool v = ((x_ >> kReadShift) & 3) |
| <= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); |
| DCHECK_EQ(v, (IsAtomic() < kIsAtomic) || |
| (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite)); |
| return v; |
| } |
| |
| bool IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const { |
| bool v = ((x_ >> kReadShift) & 3) |
| >= u64((kIsWrite ^ 1) | (kIsAtomic << 1)); |
| DCHECK_EQ(v, (IsAtomic() > kIsAtomic) || |
| (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite)); |
| return v; |
| } |
| |
| private: |
| static const u64 kReadShift = 5; |
| static const u64 kReadBit = 1ull << kReadShift; |
| static const u64 kAtomicShift = 6; |
| static const u64 kAtomicBit = 1ull << kAtomicShift; |
| |
| u64 size_log() const { return (x_ >> 3) & 3; } |
| |
| static bool TwoRangesIntersectSLOW(const Shadow s1, const Shadow s2) { |
| if (s1.addr0() == s2.addr0()) return true; |
| if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0()) |
| return true; |
| if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0()) |
| return true; |
| return false; |
| } |
| }; |
| |
| struct SignalContext; |
| |
| // This struct is stored in TLS. |
| struct ThreadState { |
| FastState fast_state; |
| // Synch epoch represents the threads's epoch before the last synchronization |
| // action. It allows to reduce number of shadow state updates. |
| // For example, fast_synch_epoch=100, last write to addr X was at epoch=150, |
| // if we are processing write to X from the same thread at epoch=200, |
| // we do nothing, because both writes happen in the same 'synch epoch'. |
| // That is, if another memory access does not race with the former write, |
| // it does not race with the latter as well. |
| // QUESTION: can we can squeeze this into ThreadState::Fast? |
| // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are |
| // taken by epoch between synchs. |
| // This way we can save one load from tls. |
| u64 fast_synch_epoch; |
| // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read. |
| // We do not distinguish beteween ignoring reads and writes |
| // for better performance. |
| int ignore_reads_and_writes; |
| uptr *shadow_stack_pos; |
| u64 *racy_shadow_addr; |
| u64 racy_state[2]; |
| Trace trace; |
| #ifndef TSAN_GO |
| // C/C++ uses embed shadow stack of fixed size. |
| uptr shadow_stack[kShadowStackSize]; |
| #else |
| // Go uses satellite shadow stack with dynamic size. |
| uptr *shadow_stack; |
| uptr *shadow_stack_end; |
| #endif |
| MutexSet mset; |
| ThreadClock clock; |
| #ifndef TSAN_GO |
| AllocatorCache alloc_cache; |
| #endif |
| u64 stat[StatCnt]; |
| const int tid; |
| const int unique_id; |
| int in_rtl; |
| bool in_symbolizer; |
| bool is_alive; |
| bool is_freeing; |
| const uptr stk_addr; |
| const uptr stk_size; |
| const uptr tls_addr; |
| const uptr tls_size; |
| |
| DeadlockDetector deadlock_detector; |
| |
| bool in_signal_handler; |
| SignalContext *signal_ctx; |
| |
| #ifndef TSAN_GO |
| u32 last_sleep_stack_id; |
| ThreadClock last_sleep_clock; |
| #endif |
| |
| // Set in regions of runtime that must be signal-safe and fork-safe. |
| // If set, malloc must not be called. |
| int nomalloc; |
| |
| explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch, |
| uptr stk_addr, uptr stk_size, |
| uptr tls_addr, uptr tls_size); |
| }; |
| |
| Context *CTX(); |
| |
| #ifndef TSAN_GO |
| extern THREADLOCAL char cur_thread_placeholder[]; |
| INLINE ThreadState *cur_thread() { |
| return reinterpret_cast<ThreadState *>(&cur_thread_placeholder); |
| } |
| #endif |
| |
| enum ThreadStatus { |
| ThreadStatusInvalid, // Non-existent thread, data is invalid. |
| ThreadStatusCreated, // Created but not yet running. |
| ThreadStatusRunning, // The thread is currently running. |
| ThreadStatusFinished, // Joinable thread is finished but not yet joined. |
| ThreadStatusDead // Joined, but some info (trace) is still alive. |
| }; |
| |
| // An info about a thread that is hold for some time after its termination. |
| struct ThreadDeadInfo { |
| Trace trace; |
| }; |
| |
| struct ThreadContext { |
| const int tid; |
| int unique_id; // Non-rolling thread id. |
| uptr os_id; // pid |
| uptr user_id; // Some opaque user thread id (e.g. pthread_t). |
| ThreadState *thr; |
| ThreadStatus status; |
| bool detached; |
| int reuse_count; |
| SyncClock sync; |
| // Epoch at which the thread had started. |
| // If we see an event from the thread stamped by an older epoch, |
| // the event is from a dead thread that shared tid with this thread. |
| u64 epoch0; |
| u64 epoch1; |
| StackTrace creation_stack; |
| int creation_tid; |
| ThreadDeadInfo *dead_info; |
| ThreadContext *dead_next; // In dead thread list. |
| char *name; // As annotated by user. |
| |
| explicit ThreadContext(int tid); |
| }; |
| |
| struct RacyStacks { |
| MD5Hash hash[2]; |
| bool operator==(const RacyStacks &other) const { |
| if (hash[0] == other.hash[0] && hash[1] == other.hash[1]) |
| return true; |
| if (hash[0] == other.hash[1] && hash[1] == other.hash[0]) |
| return true; |
| return false; |
| } |
| }; |
| |
| struct RacyAddress { |
| uptr addr_min; |
| uptr addr_max; |
| }; |
| |
| struct FiredSuppression { |
| ReportType type; |
| uptr pc; |
| }; |
| |
| struct Context { |
| Context(); |
| |
| bool initialized; |
| |
| SyncTab synctab; |
| |
| Mutex report_mtx; |
| int nreported; |
| int nmissed_expected; |
| |
| Mutex thread_mtx; |
| unsigned thread_seq; |
| unsigned unique_thread_seq; |
| int alive_threads; |
| int max_alive_threads; |
| ThreadContext *threads[kMaxTid]; |
| int dead_list_size; |
| ThreadContext* dead_list_head; |
| ThreadContext* dead_list_tail; |
| |
| Vector<RacyStacks> racy_stacks; |
| Vector<RacyAddress> racy_addresses; |
| Vector<FiredSuppression> fired_suppressions; |
| |
| Flags flags; |
| |
| u64 stat[StatCnt]; |
| u64 int_alloc_cnt[MBlockTypeCount]; |
| u64 int_alloc_siz[MBlockTypeCount]; |
| }; |
| |
| class ScopedInRtl { |
| public: |
| ScopedInRtl(); |
| ~ScopedInRtl(); |
| private: |
| ThreadState*thr_; |
| int in_rtl_; |
| int errno_; |
| }; |
| |
| class ScopedReport { |
| public: |
| explicit ScopedReport(ReportType typ); |
| ~ScopedReport(); |
| |
| void AddStack(const StackTrace *stack); |
| void AddMemoryAccess(uptr addr, Shadow s, const StackTrace *stack, |
| const MutexSet *mset); |
| void AddThread(const ThreadContext *tctx); |
| void AddMutex(const SyncVar *s); |
| void AddLocation(uptr addr, uptr size); |
| void AddSleep(u32 stack_id); |
| |
| const ReportDesc *GetReport() const; |
| |
| private: |
| Context *ctx_; |
| ReportDesc *rep_; |
| |
| void AddMutex(u64 id); |
| |
| ScopedReport(const ScopedReport&); |
| void operator = (const ScopedReport&); |
| }; |
| |
| void RestoreStack(int tid, const u64 epoch, StackTrace *stk, MutexSet *mset); |
| |
| void StatAggregate(u64 *dst, u64 *src); |
| void StatOutput(u64 *stat); |
| void ALWAYS_INLINE INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) { |
| if (kCollectStats) |
| thr->stat[typ] += n; |
| } |
| |
| void MapShadow(uptr addr, uptr size); |
| void MapThreadTrace(uptr addr, uptr size); |
| void InitializeShadowMemory(); |
| void InitializeInterceptors(); |
| void InitializeDynamicAnnotations(); |
| |
| void ReportRace(ThreadState *thr); |
| bool OutputReport(Context *ctx, |
| const ScopedReport &srep, |
| const ReportStack *suppress_stack1 = 0, |
| const ReportStack *suppress_stack2 = 0); |
| bool IsFiredSuppression(Context *ctx, |
| const ScopedReport &srep, |
| const StackTrace &trace); |
| bool IsExpectedReport(uptr addr, uptr size); |
| bool FrameIsInternal(const ReportStack *frame); |
| ReportStack *SkipTsanInternalFrames(ReportStack *ent); |
| |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1 |
| # define DPrintf Printf |
| #else |
| # define DPrintf(...) |
| #endif |
| |
| #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2 |
| # define DPrintf2 Printf |
| #else |
| # define DPrintf2(...) |
| #endif |
| |
| u32 CurrentStackId(ThreadState *thr, uptr pc); |
| void PrintCurrentStack(ThreadState *thr, uptr pc); |
| void PrintCurrentStackSlow(); // uses libunwind |
| |
| void Initialize(ThreadState *thr); |
| int Finalize(ThreadState *thr); |
| |
| SyncVar* GetJavaSync(ThreadState *thr, uptr pc, uptr addr, |
| bool write_lock, bool create); |
| SyncVar* GetAndRemoveJavaSync(ThreadState *thr, uptr pc, uptr addr); |
| |
| void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic); |
| void MemoryAccessImpl(ThreadState *thr, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic, |
| u64 *shadow_mem, Shadow cur); |
| void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, |
| uptr size, bool is_write); |
| void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, |
| uptr size, uptr step, bool is_write); |
| |
| const int kSizeLog1 = 0; |
| const int kSizeLog2 = 1; |
| const int kSizeLog4 = 2; |
| const int kSizeLog8 = 3; |
| |
| void ALWAYS_INLINE INLINE MemoryRead(ThreadState *thr, uptr pc, |
| uptr addr, int kAccessSizeLog) { |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false); |
| } |
| |
| void ALWAYS_INLINE INLINE MemoryWrite(ThreadState *thr, uptr pc, |
| uptr addr, int kAccessSizeLog) { |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false); |
| } |
| |
| void ALWAYS_INLINE INLINE MemoryReadAtomic(ThreadState *thr, uptr pc, |
| uptr addr, int kAccessSizeLog) { |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true); |
| } |
| |
| void ALWAYS_INLINE INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc, |
| uptr addr, int kAccessSizeLog) { |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true); |
| } |
| |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size); |
| void IgnoreCtl(ThreadState *thr, bool write, bool begin); |
| |
| void FuncEntry(ThreadState *thr, uptr pc); |
| void FuncExit(ThreadState *thr); |
| |
| int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached); |
| void ThreadStart(ThreadState *thr, int tid, uptr os_id); |
| void ThreadFinish(ThreadState *thr); |
| int ThreadTid(ThreadState *thr, uptr pc, uptr uid); |
| void ThreadJoin(ThreadState *thr, uptr pc, int tid); |
| void ThreadDetach(ThreadState *thr, uptr pc, int tid); |
| void ThreadFinalize(ThreadState *thr); |
| void ThreadSetName(ThreadState *thr, const char *name); |
| int ThreadCount(ThreadState *thr); |
| void ProcessPendingSignals(ThreadState *thr); |
| |
| void MutexCreate(ThreadState *thr, uptr pc, uptr addr, |
| bool rw, bool recursive, bool linker_init); |
| void MutexDestroy(ThreadState *thr, uptr pc, uptr addr); |
| void MutexLock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexUnlock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexReadLock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr); |
| void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr); |
| |
| void Acquire(ThreadState *thr, uptr pc, uptr addr); |
| void AcquireGlobal(ThreadState *thr, uptr pc); |
| void Release(ThreadState *thr, uptr pc, uptr addr); |
| void ReleaseStore(ThreadState *thr, uptr pc, uptr addr); |
| void AfterSleep(ThreadState *thr, uptr pc); |
| |
| // The hacky call uses custom calling convention and an assembly thunk. |
| // It is considerably faster that a normal call for the caller |
| // if it is not executed (it is intended for slow paths from hot functions). |
| // The trick is that the call preserves all registers and the compiler |
| // does not treat it as a call. |
| // If it does not work for you, use normal call. |
| #if TSAN_DEBUG == 0 |
| // The caller may not create the stack frame for itself at all, |
| // so we create a reserve stack frame for it (1024b must be enough). |
| #define HACKY_CALL(f) \ |
| __asm__ __volatile__("sub $1024, %%rsp;" \ |
| "/*.cfi_adjust_cfa_offset 1024;*/" \ |
| ".hidden " #f "_thunk;" \ |
| "call " #f "_thunk;" \ |
| "add $1024, %%rsp;" \ |
| "/*.cfi_adjust_cfa_offset -1024;*/" \ |
| ::: "memory", "cc"); |
| #else |
| #define HACKY_CALL(f) f() |
| #endif |
| |
| void TraceSwitch(ThreadState *thr); |
| uptr TraceTopPC(ThreadState *thr); |
| uptr TraceSize(); |
| uptr TraceParts(); |
| |
| extern "C" void __tsan_trace_switch(); |
| void ALWAYS_INLINE INLINE TraceAddEvent(ThreadState *thr, FastState fs, |
| EventType typ, u64 addr) { |
| DCHECK_GE((int)typ, 0); |
| DCHECK_LE((int)typ, 7); |
| DCHECK_EQ(GetLsb(addr, 61), addr); |
| StatInc(thr, StatEvents); |
| u64 pos = fs.GetTracePos(); |
| if (UNLIKELY((pos % kTracePartSize) == 0)) { |
| #ifndef TSAN_GO |
| HACKY_CALL(__tsan_trace_switch); |
| #else |
| TraceSwitch(thr); |
| #endif |
| } |
| Event *trace = (Event*)GetThreadTrace(fs.tid()); |
| Event *evp = &trace[pos]; |
| Event ev = (u64)addr | ((u64)typ << 61); |
| *evp = ev; |
| } |
| |
| } // namespace __tsan |
| |
| #endif // TSAN_RTL_H |