| //===-- tsan_rtl_thread.cc ------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "tsan_rtl.h" |
| #include "tsan_mman.h" |
| #include "tsan_platform.h" |
| #include "tsan_report.h" |
| #include "tsan_sync.h" |
| |
| namespace __tsan { |
| |
| #ifndef TSAN_GO |
| const int kThreadQuarantineSize = 16; |
| #else |
| const int kThreadQuarantineSize = 64; |
| #endif |
| |
| static void MaybeReportThreadLeak(ThreadContext *tctx) { |
| if (tctx->detached) |
| return; |
| if (tctx->status != ThreadStatusCreated |
| && tctx->status != ThreadStatusRunning |
| && tctx->status != ThreadStatusFinished) |
| return; |
| ScopedReport rep(ReportTypeThreadLeak); |
| rep.AddThread(tctx); |
| OutputReport(CTX(), rep); |
| } |
| |
| void ThreadFinalize(ThreadState *thr) { |
| CHECK_GT(thr->in_rtl, 0); |
| if (!flags()->report_thread_leaks) |
| return; |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| for (unsigned i = 0; i < kMaxTid; i++) { |
| ThreadContext *tctx = ctx->threads[i]; |
| if (tctx == 0) |
| continue; |
| MaybeReportThreadLeak(tctx); |
| } |
| } |
| |
| int ThreadCount(ThreadState *thr) { |
| CHECK_GT(thr->in_rtl, 0); |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| int cnt = 0; |
| for (unsigned i = 0; i < kMaxTid; i++) { |
| ThreadContext *tctx = ctx->threads[i]; |
| if (tctx == 0) |
| continue; |
| if (tctx->status != ThreadStatusCreated |
| && tctx->status != ThreadStatusRunning) |
| continue; |
| cnt++; |
| } |
| return cnt; |
| } |
| |
| static void ThreadDead(ThreadState *thr, ThreadContext *tctx) { |
| Context *ctx = CTX(); |
| CHECK_GT(thr->in_rtl, 0); |
| CHECK(tctx->status == ThreadStatusRunning |
| || tctx->status == ThreadStatusFinished); |
| DPrintf("#%d: ThreadDead uid=%zu\n", thr->tid, tctx->user_id); |
| tctx->status = ThreadStatusDead; |
| tctx->user_id = 0; |
| tctx->sync.Reset(); |
| |
| // Put to dead list. |
| tctx->dead_next = 0; |
| if (ctx->dead_list_size == 0) |
| ctx->dead_list_head = tctx; |
| else |
| ctx->dead_list_tail->dead_next = tctx; |
| ctx->dead_list_tail = tctx; |
| ctx->dead_list_size++; |
| } |
| |
| int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached) { |
| CHECK_GT(thr->in_rtl, 0); |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| StatInc(thr, StatThreadCreate); |
| int tid = -1; |
| ThreadContext *tctx = 0; |
| if (ctx->dead_list_size > kThreadQuarantineSize |
| || ctx->thread_seq >= kMaxTid) { |
| // Reusing old thread descriptor and tid. |
| if (ctx->dead_list_size == 0) { |
| Printf("ThreadSanitizer: %d thread limit exceeded. Dying.\n", |
| kMaxTid); |
| Die(); |
| } |
| StatInc(thr, StatThreadReuse); |
| tctx = ctx->dead_list_head; |
| ctx->dead_list_head = tctx->dead_next; |
| ctx->dead_list_size--; |
| if (ctx->dead_list_size == 0) { |
| CHECK_EQ(tctx->dead_next, 0); |
| ctx->dead_list_head = 0; |
| } |
| CHECK_EQ(tctx->status, ThreadStatusDead); |
| tctx->status = ThreadStatusInvalid; |
| tctx->reuse_count++; |
| tctx->sync.Reset(); |
| tid = tctx->tid; |
| DestroyAndFree(tctx->dead_info); |
| if (tctx->name) { |
| internal_free(tctx->name); |
| tctx->name = 0; |
| } |
| } else { |
| // Allocating new thread descriptor and tid. |
| StatInc(thr, StatThreadMaxTid); |
| tid = ctx->thread_seq++; |
| void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext)); |
| tctx = new(mem) ThreadContext(tid); |
| ctx->threads[tid] = tctx; |
| MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event)); |
| } |
| CHECK_NE(tctx, 0); |
| CHECK_GE(tid, 0); |
| CHECK_LT(tid, kMaxTid); |
| DPrintf("#%d: ThreadCreate tid=%d uid=%zu\n", thr->tid, tid, uid); |
| CHECK_EQ(tctx->status, ThreadStatusInvalid); |
| ctx->alive_threads++; |
| if (ctx->max_alive_threads < ctx->alive_threads) { |
| ctx->max_alive_threads++; |
| CHECK_EQ(ctx->max_alive_threads, ctx->alive_threads); |
| StatInc(thr, StatThreadMaxAlive); |
| } |
| tctx->status = ThreadStatusCreated; |
| tctx->thr = 0; |
| tctx->user_id = uid; |
| tctx->unique_id = ctx->unique_thread_seq++; |
| tctx->detached = detached; |
| if (tid) { |
| thr->fast_state.IncrementEpoch(); |
| // Can't increment epoch w/o writing to the trace as well. |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| thr->fast_synch_epoch = thr->fast_state.epoch(); |
| thr->clock.release(&tctx->sync); |
| StatInc(thr, StatSyncRelease); |
| tctx->creation_stack.ObtainCurrent(thr, pc); |
| tctx->creation_tid = thr->tid; |
| } |
| return tid; |
| } |
| |
| void ThreadStart(ThreadState *thr, int tid, uptr os_id) { |
| CHECK_GT(thr->in_rtl, 0); |
| uptr stk_addr = 0; |
| uptr stk_size = 0; |
| uptr tls_addr = 0; |
| uptr tls_size = 0; |
| GetThreadStackAndTls(tid == 0, &stk_addr, &stk_size, &tls_addr, &tls_size); |
| |
| if (tid) { |
| if (stk_addr && stk_size) { |
| MemoryResetRange(thr, /*pc=*/ 1, stk_addr, stk_size); |
| } |
| |
| if (tls_addr && tls_size) { |
| // Check that the thr object is in tls; |
| const uptr thr_beg = (uptr)thr; |
| const uptr thr_end = (uptr)thr + sizeof(*thr); |
| CHECK_GE(thr_beg, tls_addr); |
| CHECK_LE(thr_beg, tls_addr + tls_size); |
| CHECK_GE(thr_end, tls_addr); |
| CHECK_LE(thr_end, tls_addr + tls_size); |
| // Since the thr object is huge, skip it. |
| MemoryResetRange(thr, /*pc=*/ 2, tls_addr, thr_beg - tls_addr); |
| MemoryResetRange(thr, /*pc=*/ 2, thr_end, tls_addr + tls_size - thr_end); |
| } |
| } |
| |
| Lock l(&CTX()->thread_mtx); |
| ThreadContext *tctx = CTX()->threads[tid]; |
| CHECK_NE(tctx, 0); |
| CHECK_EQ(tctx->status, ThreadStatusCreated); |
| tctx->status = ThreadStatusRunning; |
| tctx->os_id = os_id; |
| // RoundUp so that one trace part does not contain events |
| // from different threads. |
| tctx->epoch0 = RoundUp(tctx->epoch1 + 1, kTracePartSize); |
| tctx->epoch1 = (u64)-1; |
| new(thr) ThreadState(CTX(), tid, tctx->unique_id, |
| tctx->epoch0, stk_addr, stk_size, |
| tls_addr, tls_size); |
| #ifdef TSAN_GO |
| // Setup dynamic shadow stack. |
| const int kInitStackSize = 8; |
| thr->shadow_stack = (uptr*)internal_alloc(MBlockShadowStack, |
| kInitStackSize * sizeof(uptr)); |
| thr->shadow_stack_pos = thr->shadow_stack; |
| thr->shadow_stack_end = thr->shadow_stack + kInitStackSize; |
| #endif |
| #ifndef TSAN_GO |
| AllocatorThreadStart(thr); |
| #endif |
| tctx->thr = thr; |
| thr->fast_synch_epoch = tctx->epoch0; |
| thr->clock.set(tid, tctx->epoch0); |
| thr->clock.acquire(&tctx->sync); |
| thr->fast_state.SetHistorySize(flags()->history_size); |
| const uptr trace = (tctx->epoch0 / kTracePartSize) % TraceParts(); |
| thr->trace.headers[trace].epoch0 = tctx->epoch0; |
| StatInc(thr, StatSyncAcquire); |
| DPrintf("#%d: ThreadStart epoch=%zu stk_addr=%zx stk_size=%zx " |
| "tls_addr=%zx tls_size=%zx\n", |
| tid, (uptr)tctx->epoch0, stk_addr, stk_size, tls_addr, tls_size); |
| thr->is_alive = true; |
| } |
| |
| void ThreadFinish(ThreadState *thr) { |
| CHECK_GT(thr->in_rtl, 0); |
| StatInc(thr, StatThreadFinish); |
| // FIXME: Treat it as write. |
| if (thr->stk_addr && thr->stk_size) |
| MemoryResetRange(thr, /*pc=*/ 3, thr->stk_addr, thr->stk_size); |
| if (thr->tls_addr && thr->tls_size) { |
| const uptr thr_beg = (uptr)thr; |
| const uptr thr_end = (uptr)thr + sizeof(*thr); |
| // Since the thr object is huge, skip it. |
| MemoryResetRange(thr, /*pc=*/ 4, thr->tls_addr, thr_beg - thr->tls_addr); |
| MemoryResetRange(thr, /*pc=*/ 5, |
| thr_end, thr->tls_addr + thr->tls_size - thr_end); |
| } |
| thr->is_alive = false; |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| ThreadContext *tctx = ctx->threads[thr->tid]; |
| CHECK_NE(tctx, 0); |
| CHECK_EQ(tctx->status, ThreadStatusRunning); |
| CHECK_GT(ctx->alive_threads, 0); |
| ctx->alive_threads--; |
| if (tctx->detached) { |
| ThreadDead(thr, tctx); |
| } else { |
| thr->fast_state.IncrementEpoch(); |
| // Can't increment epoch w/o writing to the trace as well. |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, 0); |
| thr->clock.set(thr->tid, thr->fast_state.epoch()); |
| thr->fast_synch_epoch = thr->fast_state.epoch(); |
| thr->clock.release(&tctx->sync); |
| StatInc(thr, StatSyncRelease); |
| tctx->status = ThreadStatusFinished; |
| } |
| |
| // Save from info about the thread. |
| tctx->dead_info = new(internal_alloc(MBlockDeadInfo, sizeof(ThreadDeadInfo))) |
| ThreadDeadInfo(); |
| for (uptr i = 0; i < TraceParts(); i++) { |
| tctx->dead_info->trace.headers[i].epoch0 = thr->trace.headers[i].epoch0; |
| tctx->dead_info->trace.headers[i].stack0.CopyFrom( |
| thr->trace.headers[i].stack0); |
| } |
| tctx->epoch1 = thr->fast_state.epoch(); |
| |
| #ifndef TSAN_GO |
| AllocatorThreadFinish(thr); |
| #endif |
| thr->~ThreadState(); |
| StatAggregate(ctx->stat, thr->stat); |
| tctx->thr = 0; |
| } |
| |
| int ThreadTid(ThreadState *thr, uptr pc, uptr uid) { |
| CHECK_GT(thr->in_rtl, 0); |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| int res = -1; |
| for (unsigned tid = 0; tid < kMaxTid; tid++) { |
| ThreadContext *tctx = ctx->threads[tid]; |
| if (tctx != 0 && tctx->user_id == uid |
| && tctx->status != ThreadStatusInvalid) { |
| tctx->user_id = 0; |
| res = tid; |
| break; |
| } |
| } |
| DPrintf("#%d: ThreadTid uid=%zu tid=%d\n", thr->tid, uid, res); |
| return res; |
| } |
| |
| void ThreadJoin(ThreadState *thr, uptr pc, int tid) { |
| CHECK_GT(thr->in_rtl, 0); |
| CHECK_GT(tid, 0); |
| CHECK_LT(tid, kMaxTid); |
| DPrintf("#%d: ThreadJoin tid=%d\n", thr->tid, tid); |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| ThreadContext *tctx = ctx->threads[tid]; |
| if (tctx->status == ThreadStatusInvalid) { |
| Printf("ThreadSanitizer: join of non-existent thread\n"); |
| return; |
| } |
| // FIXME(dvyukov): print message and continue (it's user error). |
| CHECK_EQ(tctx->detached, false); |
| CHECK_EQ(tctx->status, ThreadStatusFinished); |
| thr->clock.acquire(&tctx->sync); |
| StatInc(thr, StatSyncAcquire); |
| ThreadDead(thr, tctx); |
| } |
| |
| void ThreadDetach(ThreadState *thr, uptr pc, int tid) { |
| CHECK_GT(thr->in_rtl, 0); |
| CHECK_GT(tid, 0); |
| CHECK_LT(tid, kMaxTid); |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| ThreadContext *tctx = ctx->threads[tid]; |
| if (tctx->status == ThreadStatusInvalid) { |
| Printf("ThreadSanitizer: detach of non-existent thread\n"); |
| return; |
| } |
| if (tctx->status == ThreadStatusFinished) { |
| ThreadDead(thr, tctx); |
| } else { |
| tctx->detached = true; |
| } |
| } |
| |
| void ThreadSetName(ThreadState *thr, const char *name) { |
| Context *ctx = CTX(); |
| Lock l(&ctx->thread_mtx); |
| ThreadContext *tctx = ctx->threads[thr->tid]; |
| CHECK_NE(tctx, 0); |
| CHECK_EQ(tctx->status, ThreadStatusRunning); |
| if (tctx->name) { |
| internal_free(tctx->name); |
| tctx->name = 0; |
| } |
| if (name) |
| tctx->name = internal_strdup(name); |
| } |
| |
| void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, |
| uptr size, bool is_write) { |
| if (size == 0) |
| return; |
| |
| u64 *shadow_mem = (u64*)MemToShadow(addr); |
| DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", |
| thr->tid, (void*)pc, (void*)addr, |
| (int)size, is_write); |
| |
| #if TSAN_DEBUG |
| if (!IsAppMem(addr)) { |
| Printf("Access to non app mem %zx\n", addr); |
| DCHECK(IsAppMem(addr)); |
| } |
| if (!IsAppMem(addr + size - 1)) { |
| Printf("Access to non app mem %zx\n", addr + size - 1); |
| DCHECK(IsAppMem(addr + size - 1)); |
| } |
| if (!IsShadowMem((uptr)shadow_mem)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); |
| DCHECK(IsShadowMem((uptr)shadow_mem)); |
| } |
| if (!IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))) { |
| Printf("Bad shadow addr %p (%zx)\n", |
| shadow_mem + size * kShadowCnt / 8 - 1, addr + size - 1); |
| DCHECK(IsShadowMem((uptr)(shadow_mem + size * kShadowCnt / 8 - 1))); |
| } |
| #endif |
| |
| StatInc(thr, StatMopRange); |
| |
| FastState fast_state = thr->fast_state; |
| if (fast_state.GetIgnoreBit()) |
| return; |
| |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| |
| bool unaligned = (addr % kShadowCell) != 0; |
| |
| // Handle unaligned beginning, if any. |
| for (; addr % kShadowCell && size; addr++, size--) { |
| int const kAccessSizeLog = 0; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, |
| shadow_mem, cur); |
| } |
| if (unaligned) |
| shadow_mem += kShadowCnt; |
| // Handle middle part, if any. |
| for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) { |
| int const kAccessSizeLog = 3; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(0, kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, |
| shadow_mem, cur); |
| shadow_mem += kShadowCnt; |
| } |
| // Handle ending, if any. |
| for (; size; addr++, size--) { |
| int const kAccessSizeLog = 0; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, |
| shadow_mem, cur); |
| } |
| } |
| |
| void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr, |
| uptr size, uptr step, bool is_write) { |
| if (size == 0) |
| return; |
| FastState fast_state = thr->fast_state; |
| if (fast_state.GetIgnoreBit()) |
| return; |
| StatInc(thr, StatMopRange); |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| |
| for (uptr addr_end = addr + size; addr < addr_end; addr += step) { |
| u64 *shadow_mem = (u64*)MemToShadow(addr); |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kSizeLog1); |
| MemoryAccessImpl(thr, addr, kSizeLog1, is_write, false, |
| shadow_mem, cur); |
| } |
| } |
| } // namespace __tsan |