| //===-- tsan_mman_test.cc -------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| //===----------------------------------------------------------------------===// |
| #include <limits> |
| #include "tsan_mman.h" |
| #include "tsan_rtl.h" |
| #include "gtest/gtest.h" |
| |
| extern "C" { |
| uptr __tsan_get_current_allocated_bytes(); |
| uptr __tsan_get_heap_size(); |
| uptr __tsan_get_free_bytes(); |
| uptr __tsan_get_unmapped_bytes(); |
| uptr __tsan_get_estimated_allocated_size(uptr size); |
| bool __tsan_get_ownership(void *p); |
| uptr __tsan_get_allocated_size(void *p); |
| } |
| |
| namespace __tsan { |
| |
| TEST(Mman, Internal) { |
| ScopedInRtl in_rtl; |
| char *p = (char*)internal_alloc(MBlockScopedBuf, 10); |
| EXPECT_NE(p, (char*)0); |
| char *p2 = (char*)internal_alloc(MBlockScopedBuf, 20); |
| EXPECT_NE(p2, (char*)0); |
| EXPECT_NE(p2, p); |
| for (int i = 0; i < 10; i++) { |
| p[i] = 42; |
| } |
| for (int i = 0; i < 20; i++) { |
| ((char*)p2)[i] = 42; |
| } |
| internal_free(p); |
| internal_free(p2); |
| } |
| |
| TEST(Mman, User) { |
| ScopedInRtl in_rtl; |
| ThreadState *thr = cur_thread(); |
| uptr pc = 0; |
| char *p = (char*)user_alloc(thr, pc, 10); |
| EXPECT_NE(p, (char*)0); |
| char *p2 = (char*)user_alloc(thr, pc, 20); |
| EXPECT_NE(p2, (char*)0); |
| EXPECT_NE(p2, p); |
| MBlock *b = user_mblock(thr, p); |
| EXPECT_NE(b, (MBlock*)0); |
| EXPECT_EQ(b->size, (uptr)10); |
| MBlock *b2 = user_mblock(thr, p2); |
| EXPECT_NE(b2, (MBlock*)0); |
| EXPECT_EQ(b2->size, (uptr)20); |
| for (int i = 0; i < 10; i++) { |
| p[i] = 42; |
| EXPECT_EQ(b, user_mblock(thr, p + i)); |
| } |
| for (int i = 0; i < 20; i++) { |
| ((char*)p2)[i] = 42; |
| EXPECT_EQ(b2, user_mblock(thr, p2 + i)); |
| } |
| user_free(thr, pc, p); |
| user_free(thr, pc, p2); |
| } |
| |
| TEST(Mman, UserRealloc) { |
| ScopedInRtl in_rtl; |
| ThreadState *thr = cur_thread(); |
| uptr pc = 0; |
| { |
| void *p = user_realloc(thr, pc, 0, 0); |
| // Strictly saying this is incorrect, realloc(NULL, N) is equivalent to |
| // malloc(N), thus must return non-NULL pointer. |
| EXPECT_EQ(p, (void*)0); |
| } |
| { |
| void *p = user_realloc(thr, pc, 0, 100); |
| EXPECT_NE(p, (void*)0); |
| memset(p, 0xde, 100); |
| user_free(thr, pc, p); |
| } |
| { |
| void *p = user_alloc(thr, pc, 100); |
| EXPECT_NE(p, (void*)0); |
| memset(p, 0xde, 100); |
| void *p2 = user_realloc(thr, pc, p, 0); |
| EXPECT_EQ(p2, (void*)0); |
| } |
| { |
| void *p = user_realloc(thr, pc, 0, 100); |
| EXPECT_NE(p, (void*)0); |
| memset(p, 0xde, 100); |
| void *p2 = user_realloc(thr, pc, p, 10000); |
| EXPECT_NE(p2, (void*)0); |
| for (int i = 0; i < 100; i++) |
| EXPECT_EQ(((char*)p2)[i], (char)0xde); |
| memset(p2, 0xde, 10000); |
| user_free(thr, pc, p2); |
| } |
| { |
| void *p = user_realloc(thr, pc, 0, 10000); |
| EXPECT_NE(p, (void*)0); |
| memset(p, 0xde, 10000); |
| void *p2 = user_realloc(thr, pc, p, 10); |
| EXPECT_NE(p2, (void*)0); |
| for (int i = 0; i < 10; i++) |
| EXPECT_EQ(((char*)p2)[i], (char)0xde); |
| user_free(thr, pc, p2); |
| } |
| } |
| |
| TEST(Mman, UsableSize) { |
| ScopedInRtl in_rtl; |
| ThreadState *thr = cur_thread(); |
| uptr pc = 0; |
| char *p = (char*)user_alloc(thr, pc, 10); |
| char *p2 = (char*)user_alloc(thr, pc, 20); |
| EXPECT_EQ(0U, user_alloc_usable_size(thr, pc, NULL)); |
| EXPECT_EQ(10U, user_alloc_usable_size(thr, pc, p)); |
| EXPECT_EQ(20U, user_alloc_usable_size(thr, pc, p2)); |
| user_free(thr, pc, p); |
| user_free(thr, pc, p2); |
| } |
| |
| TEST(Mman, Stats) { |
| ScopedInRtl in_rtl; |
| ThreadState *thr = cur_thread(); |
| |
| uptr alloc0 = __tsan_get_current_allocated_bytes(); |
| uptr heap0 = __tsan_get_heap_size(); |
| uptr free0 = __tsan_get_free_bytes(); |
| uptr unmapped0 = __tsan_get_unmapped_bytes(); |
| |
| EXPECT_EQ(__tsan_get_estimated_allocated_size(10), (uptr)10); |
| EXPECT_EQ(__tsan_get_estimated_allocated_size(20), (uptr)20); |
| EXPECT_EQ(__tsan_get_estimated_allocated_size(100), (uptr)100); |
| |
| char *p = (char*)user_alloc(thr, 0, 10); |
| EXPECT_EQ(__tsan_get_ownership(p), true); |
| EXPECT_EQ(__tsan_get_allocated_size(p), (uptr)10); |
| |
| EXPECT_EQ(__tsan_get_current_allocated_bytes(), alloc0 + 16); |
| EXPECT_GE(__tsan_get_heap_size(), heap0); |
| EXPECT_EQ(__tsan_get_free_bytes(), free0); |
| EXPECT_EQ(__tsan_get_unmapped_bytes(), unmapped0); |
| |
| user_free(thr, 0, p); |
| |
| EXPECT_EQ(__tsan_get_current_allocated_bytes(), alloc0); |
| EXPECT_GE(__tsan_get_heap_size(), heap0); |
| EXPECT_EQ(__tsan_get_free_bytes(), free0); |
| EXPECT_EQ(__tsan_get_unmapped_bytes(), unmapped0); |
| } |
| |
| TEST(Mman, CallocOverflow) { |
| size_t kArraySize = 4096; |
| volatile size_t kMaxSizeT = std::numeric_limits<size_t>::max(); |
| volatile size_t kArraySize2 = kMaxSizeT / kArraySize + 10; |
| volatile void *p = calloc(kArraySize, kArraySize2); // Should return 0. |
| EXPECT_EQ(0L, p); |
| } |
| |
| } // namespace __tsan |