blob: 4540ef9c596e01aa2dc811d4e4838e78a0960590 [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
#include "tomcrypt.h"
/**
@param rmd256.c
RMD256 Hash function
*/
#ifdef RIPEMD256
const struct ltc_hash_descriptor rmd256_desc =
{
"rmd256",
8,
16,
64,
/* OID */
{ 1, 3, 36, 3, 2, 3 },
6,
&rmd256_init,
&rmd256_process,
&rmd256_done,
&rmd256_test,
NULL
};
/* the four basic functions F(), G() and H() */
#define F(x, y, z) ((x) ^ (y) ^ (z))
#define G(x, y, z) (((x) & (y)) | (~(x) & (z)))
#define H(x, y, z) (((x) | ~(y)) ^ (z))
#define I(x, y, z) (((x) & (z)) | ((y) & ~(z)))
/* the eight basic operations FF() through III() */
#define FF(a, b, c, d, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s));
#define GG(a, b, c, d, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x5a827999UL;\
(a) = ROLc((a), (s));
#define HH(a, b, c, d, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x6ed9eba1UL;\
(a) = ROLc((a), (s));
#define II(a, b, c, d, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x8f1bbcdcUL;\
(a) = ROLc((a), (s));
#define FFF(a, b, c, d, x, s) \
(a) += F((b), (c), (d)) + (x);\
(a) = ROLc((a), (s));
#define GGG(a, b, c, d, x, s) \
(a) += G((b), (c), (d)) + (x) + 0x6d703ef3UL;\
(a) = ROLc((a), (s));
#define HHH(a, b, c, d, x, s) \
(a) += H((b), (c), (d)) + (x) + 0x5c4dd124UL;\
(a) = ROLc((a), (s));
#define III(a, b, c, d, x, s) \
(a) += I((b), (c), (d)) + (x) + 0x50a28be6UL;\
(a) = ROLc((a), (s));
#ifdef LTC_CLEAN_STACK
static int _rmd256_compress(hash_state *md, unsigned char *buf)
#else
static int rmd256_compress(hash_state *md, unsigned char *buf)
#endif
{
ulong32 aa,bb,cc,dd,aaa,bbb,ccc,ddd,tmp,X[16];
int i;
/* load words X */
for (i = 0; i < 16; i++){
LOAD32L(X[i], buf + (4 * i));
}
/* load state */
aa = md->rmd256.state[0];
bb = md->rmd256.state[1];
cc = md->rmd256.state[2];
dd = md->rmd256.state[3];
aaa = md->rmd256.state[4];
bbb = md->rmd256.state[5];
ccc = md->rmd256.state[6];
ddd = md->rmd256.state[7];
/* round 1 */
FF(aa, bb, cc, dd, X[ 0], 11);
FF(dd, aa, bb, cc, X[ 1], 14);
FF(cc, dd, aa, bb, X[ 2], 15);
FF(bb, cc, dd, aa, X[ 3], 12);
FF(aa, bb, cc, dd, X[ 4], 5);
FF(dd, aa, bb, cc, X[ 5], 8);
FF(cc, dd, aa, bb, X[ 6], 7);
FF(bb, cc, dd, aa, X[ 7], 9);
FF(aa, bb, cc, dd, X[ 8], 11);
FF(dd, aa, bb, cc, X[ 9], 13);
FF(cc, dd, aa, bb, X[10], 14);
FF(bb, cc, dd, aa, X[11], 15);
FF(aa, bb, cc, dd, X[12], 6);
FF(dd, aa, bb, cc, X[13], 7);
FF(cc, dd, aa, bb, X[14], 9);
FF(bb, cc, dd, aa, X[15], 8);
/* parallel round 1 */
III(aaa, bbb, ccc, ddd, X[ 5], 8);
III(ddd, aaa, bbb, ccc, X[14], 9);
III(ccc, ddd, aaa, bbb, X[ 7], 9);
III(bbb, ccc, ddd, aaa, X[ 0], 11);
III(aaa, bbb, ccc, ddd, X[ 9], 13);
III(ddd, aaa, bbb, ccc, X[ 2], 15);
III(ccc, ddd, aaa, bbb, X[11], 15);
III(bbb, ccc, ddd, aaa, X[ 4], 5);
III(aaa, bbb, ccc, ddd, X[13], 7);
III(ddd, aaa, bbb, ccc, X[ 6], 7);
III(ccc, ddd, aaa, bbb, X[15], 8);
III(bbb, ccc, ddd, aaa, X[ 8], 11);
III(aaa, bbb, ccc, ddd, X[ 1], 14);
III(ddd, aaa, bbb, ccc, X[10], 14);
III(ccc, ddd, aaa, bbb, X[ 3], 12);
III(bbb, ccc, ddd, aaa, X[12], 6);
tmp = aa; aa = aaa; aaa = tmp;
/* round 2 */
GG(aa, bb, cc, dd, X[ 7], 7);
GG(dd, aa, bb, cc, X[ 4], 6);
GG(cc, dd, aa, bb, X[13], 8);
GG(bb, cc, dd, aa, X[ 1], 13);
GG(aa, bb, cc, dd, X[10], 11);
GG(dd, aa, bb, cc, X[ 6], 9);
GG(cc, dd, aa, bb, X[15], 7);
GG(bb, cc, dd, aa, X[ 3], 15);
GG(aa, bb, cc, dd, X[12], 7);
GG(dd, aa, bb, cc, X[ 0], 12);
GG(cc, dd, aa, bb, X[ 9], 15);
GG(bb, cc, dd, aa, X[ 5], 9);
GG(aa, bb, cc, dd, X[ 2], 11);
GG(dd, aa, bb, cc, X[14], 7);
GG(cc, dd, aa, bb, X[11], 13);
GG(bb, cc, dd, aa, X[ 8], 12);
/* parallel round 2 */
HHH(aaa, bbb, ccc, ddd, X[ 6], 9);
HHH(ddd, aaa, bbb, ccc, X[11], 13);
HHH(ccc, ddd, aaa, bbb, X[ 3], 15);
HHH(bbb, ccc, ddd, aaa, X[ 7], 7);
HHH(aaa, bbb, ccc, ddd, X[ 0], 12);
HHH(ddd, aaa, bbb, ccc, X[13], 8);
HHH(ccc, ddd, aaa, bbb, X[ 5], 9);
HHH(bbb, ccc, ddd, aaa, X[10], 11);
HHH(aaa, bbb, ccc, ddd, X[14], 7);
HHH(ddd, aaa, bbb, ccc, X[15], 7);
HHH(ccc, ddd, aaa, bbb, X[ 8], 12);
HHH(bbb, ccc, ddd, aaa, X[12], 7);
HHH(aaa, bbb, ccc, ddd, X[ 4], 6);
HHH(ddd, aaa, bbb, ccc, X[ 9], 15);
HHH(ccc, ddd, aaa, bbb, X[ 1], 13);
HHH(bbb, ccc, ddd, aaa, X[ 2], 11);
tmp = bb; bb = bbb; bbb = tmp;
/* round 3 */
HH(aa, bb, cc, dd, X[ 3], 11);
HH(dd, aa, bb, cc, X[10], 13);
HH(cc, dd, aa, bb, X[14], 6);
HH(bb, cc, dd, aa, X[ 4], 7);
HH(aa, bb, cc, dd, X[ 9], 14);
HH(dd, aa, bb, cc, X[15], 9);
HH(cc, dd, aa, bb, X[ 8], 13);
HH(bb, cc, dd, aa, X[ 1], 15);
HH(aa, bb, cc, dd, X[ 2], 14);
HH(dd, aa, bb, cc, X[ 7], 8);
HH(cc, dd, aa, bb, X[ 0], 13);
HH(bb, cc, dd, aa, X[ 6], 6);
HH(aa, bb, cc, dd, X[13], 5);
HH(dd, aa, bb, cc, X[11], 12);
HH(cc, dd, aa, bb, X[ 5], 7);
HH(bb, cc, dd, aa, X[12], 5);
/* parallel round 3 */
GGG(aaa, bbb, ccc, ddd, X[15], 9);
GGG(ddd, aaa, bbb, ccc, X[ 5], 7);
GGG(ccc, ddd, aaa, bbb, X[ 1], 15);
GGG(bbb, ccc, ddd, aaa, X[ 3], 11);
GGG(aaa, bbb, ccc, ddd, X[ 7], 8);
GGG(ddd, aaa, bbb, ccc, X[14], 6);
GGG(ccc, ddd, aaa, bbb, X[ 6], 6);
GGG(bbb, ccc, ddd, aaa, X[ 9], 14);
GGG(aaa, bbb, ccc, ddd, X[11], 12);
GGG(ddd, aaa, bbb, ccc, X[ 8], 13);
GGG(ccc, ddd, aaa, bbb, X[12], 5);
GGG(bbb, ccc, ddd, aaa, X[ 2], 14);
GGG(aaa, bbb, ccc, ddd, X[10], 13);
GGG(ddd, aaa, bbb, ccc, X[ 0], 13);
GGG(ccc, ddd, aaa, bbb, X[ 4], 7);
GGG(bbb, ccc, ddd, aaa, X[13], 5);
tmp = cc; cc = ccc; ccc = tmp;
/* round 4 */
II(aa, bb, cc, dd, X[ 1], 11);
II(dd, aa, bb, cc, X[ 9], 12);
II(cc, dd, aa, bb, X[11], 14);
II(bb, cc, dd, aa, X[10], 15);
II(aa, bb, cc, dd, X[ 0], 14);
II(dd, aa, bb, cc, X[ 8], 15);
II(cc, dd, aa, bb, X[12], 9);
II(bb, cc, dd, aa, X[ 4], 8);
II(aa, bb, cc, dd, X[13], 9);
II(dd, aa, bb, cc, X[ 3], 14);
II(cc, dd, aa, bb, X[ 7], 5);
II(bb, cc, dd, aa, X[15], 6);
II(aa, bb, cc, dd, X[14], 8);
II(dd, aa, bb, cc, X[ 5], 6);
II(cc, dd, aa, bb, X[ 6], 5);
II(bb, cc, dd, aa, X[ 2], 12);
/* parallel round 4 */
FFF(aaa, bbb, ccc, ddd, X[ 8], 15);
FFF(ddd, aaa, bbb, ccc, X[ 6], 5);
FFF(ccc, ddd, aaa, bbb, X[ 4], 8);
FFF(bbb, ccc, ddd, aaa, X[ 1], 11);
FFF(aaa, bbb, ccc, ddd, X[ 3], 14);
FFF(ddd, aaa, bbb, ccc, X[11], 14);
FFF(ccc, ddd, aaa, bbb, X[15], 6);
FFF(bbb, ccc, ddd, aaa, X[ 0], 14);
FFF(aaa, bbb, ccc, ddd, X[ 5], 6);
FFF(ddd, aaa, bbb, ccc, X[12], 9);
FFF(ccc, ddd, aaa, bbb, X[ 2], 12);
FFF(bbb, ccc, ddd, aaa, X[13], 9);
FFF(aaa, bbb, ccc, ddd, X[ 9], 12);
FFF(ddd, aaa, bbb, ccc, X[ 7], 5);
FFF(ccc, ddd, aaa, bbb, X[10], 15);
FFF(bbb, ccc, ddd, aaa, X[14], 8);
tmp = dd; dd = ddd; ddd = tmp;
/* combine results */
md->rmd256.state[0] += aa;
md->rmd256.state[1] += bb;
md->rmd256.state[2] += cc;
md->rmd256.state[3] += dd;
md->rmd256.state[4] += aaa;
md->rmd256.state[5] += bbb;
md->rmd256.state[6] += ccc;
md->rmd256.state[7] += ddd;
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
static int rmd256_compress(hash_state *md, unsigned char *buf)
{
int err;
err = _rmd256_compress(md, buf);
burn_stack(sizeof(ulong32) * 25 + sizeof(int));
return err;
}
#endif
/**
Initialize the hash state
@param md The hash state you wish to initialize
@return CRYPT_OK if successful
*/
int rmd256_init(hash_state * md)
{
LTC_ARGCHK(md != NULL);
md->rmd256.state[0] = 0x67452301UL;
md->rmd256.state[1] = 0xefcdab89UL;
md->rmd256.state[2] = 0x98badcfeUL;
md->rmd256.state[3] = 0x10325476UL;
md->rmd256.state[4] = 0x76543210UL;
md->rmd256.state[5] = 0xfedcba98UL;
md->rmd256.state[6] = 0x89abcdefUL;
md->rmd256.state[7] = 0x01234567UL;
md->rmd256.curlen = 0;
md->rmd256.length = 0;
return CRYPT_OK;
}
/**
Process a block of memory though the hash
@param md The hash state
@param in The data to hash
@param inlen The length of the data (octets)
@return CRYPT_OK if successful
*/
HASH_PROCESS(rmd256_process, rmd256_compress, rmd256, 64)
/**
Terminate the hash to get the digest
@param md The hash state
@param out [out] The destination of the hash (16 bytes)
@return CRYPT_OK if successful
*/
int rmd256_done(hash_state * md, unsigned char *out)
{
int i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (md->rmd256.curlen >= sizeof(md->rmd256.buf)) {
return CRYPT_INVALID_ARG;
}
/* increase the length of the message */
md->rmd256.length += md->rmd256.curlen * 8;
/* append the '1' bit */
md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0x80;
/* if the length is currently above 56 bytes we append zeros
* then compress. Then we can fall back to padding zeros and length
* encoding like normal.
*/
if (md->rmd256.curlen > 56) {
while (md->rmd256.curlen < 64) {
md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
}
rmd256_compress(md, md->rmd256.buf);
md->rmd256.curlen = 0;
}
/* pad upto 56 bytes of zeroes */
while (md->rmd256.curlen < 56) {
md->rmd256.buf[md->rmd256.curlen++] = (unsigned char)0;
}
/* store length */
STORE64L(md->rmd256.length, md->rmd256.buf+56);
rmd256_compress(md, md->rmd256.buf);
/* copy output */
for (i = 0; i < 8; i++) {
STORE32L(md->rmd256.state[i], out+(4*i));
}
#ifdef LTC_CLEAN_STACK
zeromem(md, sizeof(hash_state));
#endif
return CRYPT_OK;
}
/**
Self-test the hash
@return CRYPT_OK if successful, CRYPT_NOP if self-tests have been disabled
*/
int rmd256_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
char *msg;
unsigned char md[32];
} tests[] = {
{ "",
{ 0x02, 0xba, 0x4c, 0x4e, 0x5f, 0x8e, 0xcd, 0x18,
0x77, 0xfc, 0x52, 0xd6, 0x4d, 0x30, 0xe3, 0x7a,
0x2d, 0x97, 0x74, 0xfb, 0x1e, 0x5d, 0x02, 0x63,
0x80, 0xae, 0x01, 0x68, 0xe3, 0xc5, 0x52, 0x2d }
},
{ "a",
{ 0xf9, 0x33, 0x3e, 0x45, 0xd8, 0x57, 0xf5, 0xd9,
0x0a, 0x91, 0xba, 0xb7, 0x0a, 0x1e, 0xba, 0x0c,
0xfb, 0x1b, 0xe4, 0xb0, 0x78, 0x3c, 0x9a, 0xcf,
0xcd, 0x88, 0x3a, 0x91, 0x34, 0x69, 0x29, 0x25 }
},
{ "abc",
{ 0xaf, 0xbd, 0x6e, 0x22, 0x8b, 0x9d, 0x8c, 0xbb,
0xce, 0xf5, 0xca, 0x2d, 0x03, 0xe6, 0xdb, 0xa1,
0x0a, 0xc0, 0xbc, 0x7d, 0xcb, 0xe4, 0x68, 0x0e,
0x1e, 0x42, 0xd2, 0xe9, 0x75, 0x45, 0x9b, 0x65 }
},
{ "message digest",
{ 0x87, 0xe9, 0x71, 0x75, 0x9a, 0x1c, 0xe4, 0x7a,
0x51, 0x4d, 0x5c, 0x91, 0x4c, 0x39, 0x2c, 0x90,
0x18, 0xc7, 0xc4, 0x6b, 0xc1, 0x44, 0x65, 0x55,
0x4a, 0xfc, 0xdf, 0x54, 0xa5, 0x07, 0x0c, 0x0e }
},
{ "abcdefghijklmnopqrstuvwxyz",
{ 0x64, 0x9d, 0x30, 0x34, 0x75, 0x1e, 0xa2, 0x16,
0x77, 0x6b, 0xf9, 0xa1, 0x8a, 0xcc, 0x81, 0xbc,
0x78, 0x96, 0x11, 0x8a, 0x51, 0x97, 0x96, 0x87,
0x82, 0xdd, 0x1f, 0xd9, 0x7d, 0x8d, 0x51, 0x33 }
},
{ "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
{ 0x57, 0x40, 0xa4, 0x08, 0xac, 0x16, 0xb7, 0x20,
0xb8, 0x44, 0x24, 0xae, 0x93, 0x1c, 0xbb, 0x1f,
0xe3, 0x63, 0xd1, 0xd0, 0xbf, 0x40, 0x17, 0xf1,
0xa8, 0x9f, 0x7e, 0xa6, 0xde, 0x77, 0xa0, 0xb8 }
}
};
int x;
unsigned char buf[32];
hash_state md;
for (x = 0; x < (int)(sizeof(tests)/sizeof(tests[0])); x++) {
rmd256_init(&md);
rmd256_process(&md, (unsigned char *)tests[x].msg, strlen(tests[x].msg));
rmd256_done(&md, buf);
if (XMEMCMP(buf, tests[x].md, 32) != 0) {
#if 0
printf("Failed test %d\n", x);
#endif
return CRYPT_FAIL_TESTVECTOR;
}
}
return CRYPT_OK;
#endif
}
#endif