blob: 023756d5ba9ce8c14bde72e5adc9e7a5b623e958 [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
#define DESC_DEF_ONLY
#include "tomcrypt.h"
#ifdef TFM_DESC
#include <tfm.h>
static const struct {
int tfm_code, ltc_code;
} tfm_to_ltc_codes[] = {
{ FP_OKAY , CRYPT_OK},
{ FP_MEM , CRYPT_MEM},
{ FP_VAL , CRYPT_INVALID_ARG},
};
/**
Convert a tfm error to a LTC error (Possibly the most powerful function ever! Oh wait... no)
@param err The error to convert
@return The equivalent LTC error code or CRYPT_ERROR if none found
*/
static int tfm_to_ltc_error(int err)
{
int x;
for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) {
if (err == tfm_to_ltc_codes[x].tfm_code) {
return tfm_to_ltc_codes[x].ltc_code;
}
}
return CRYPT_ERROR;
}
static int init(void **a)
{
LTC_ARGCHK(a != NULL);
*a = XCALLOC(1, sizeof(fp_int));
if (*a == NULL) {
return CRYPT_MEM;
}
fp_init(*a);
return CRYPT_OK;
}
static void deinit(void *a)
{
LTC_ARGCHKVD(a != NULL);
XFREE(a);
}
static int neg(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_neg(((fp_int*)a), ((fp_int*)b));
return CRYPT_OK;
}
static int copy(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_copy(a, b);
return CRYPT_OK;
}
static int init_copy(void **a, void *b)
{
if (init(a) != CRYPT_OK) {
return CRYPT_MEM;
}
return copy(b, *a);
}
/* ---- trivial ---- */
static int set_int(void *a, unsigned long b)
{
LTC_ARGCHK(a != NULL);
fp_set(a, b);
return CRYPT_OK;
}
static unsigned long get_int(void *a)
{
fp_int *A;
LTC_ARGCHK(a != NULL);
A = a;
return A->used > 0 ? A->dp[0] : 0;
}
static unsigned long get_digit(void *a, int n)
{
fp_int *A;
LTC_ARGCHK(a != NULL);
A = a;
return (n >= A->used || n < 0) ? 0 : A->dp[n];
}
static int get_digit_count(void *a)
{
fp_int *A;
LTC_ARGCHK(a != NULL);
A = a;
return A->used;
}
static int compare(void *a, void *b)
{
int ret;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
ret = fp_cmp(a, b);
switch (ret) {
case FP_LT: return LTC_MP_LT;
case FP_EQ: return LTC_MP_EQ;
case FP_GT: return LTC_MP_GT;
}
return 0;
}
static int compare_d(void *a, unsigned long b)
{
int ret;
LTC_ARGCHK(a != NULL);
ret = fp_cmp_d(a, b);
switch (ret) {
case FP_LT: return LTC_MP_LT;
case FP_EQ: return LTC_MP_EQ;
case FP_GT: return LTC_MP_GT;
}
return 0;
}
static int count_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return fp_count_bits(a);
}
static int count_lsb_bits(void *a)
{
LTC_ARGCHK(a != NULL);
return fp_cnt_lsb(a);
}
static int twoexpt(void *a, int n)
{
LTC_ARGCHK(a != NULL);
fp_2expt(a, n);
return CRYPT_OK;
}
/* ---- conversions ---- */
/* read ascii string */
static int read_radix(void *a, const char *b, int radix)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix));
}
/* write one */
static int write_radix(void *a, char *b, int radix)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return tfm_to_ltc_error(fp_toradix(a, b, radix));
}
/* get size as unsigned char string */
static unsigned long unsigned_size(void *a)
{
LTC_ARGCHK(a != NULL);
return fp_unsigned_bin_size(a);
}
/* store */
static int unsigned_write(void *a, unsigned char *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_to_unsigned_bin(a, b);
return CRYPT_OK;
}
/* read */
static int unsigned_read(void *a, unsigned char *b, unsigned long len)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_read_unsigned_bin(a, b, len);
return CRYPT_OK;
}
/* add */
static int add(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_add(a, b, c);
return CRYPT_OK;
}
static int addi(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
fp_add_d(a, b, c);
return CRYPT_OK;
}
/* sub */
static int sub(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_sub(a, b, c);
return CRYPT_OK;
}
static int subi(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
fp_sub_d(a, b, c);
return CRYPT_OK;
}
/* mul */
static int mul(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_mul(a, b, c);
return CRYPT_OK;
}
static int muli(void *a, unsigned long b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
fp_mul_d(a, b, c);
return CRYPT_OK;
}
/* sqr */
static int sqr(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_sqr(a, b);
return CRYPT_OK;
}
/* div */
static int divide(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
return tfm_to_ltc_error(fp_div(a, b, c, d));
}
static int div_2(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_div_2(a, b);
return CRYPT_OK;
}
/* modi */
static int modi(void *a, unsigned long b, unsigned long *c)
{
fp_digit tmp;
int err;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(c != NULL);
if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) {
return err;
}
*c = tmp;
return CRYPT_OK;
}
/* gcd */
static int gcd(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_gcd(a, b, c);
return CRYPT_OK;
}
/* lcm */
static int lcm(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_lcm(a, b, c);
return CRYPT_OK;
}
static int mulmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
return tfm_to_ltc_error(fp_mulmod(a,b,c,d));
}
static int sqrmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return tfm_to_ltc_error(fp_sqrmod(a,b,c));
}
/* invmod */
static int invmod(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
return tfm_to_ltc_error(fp_invmod(a, b, c));
}
/* setup */
static int montgomery_setup(void *a, void **b)
{
int err;
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
*b = XCALLOC(1, sizeof(fp_digit));
if (*b == NULL) {
return CRYPT_MEM;
}
if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) {
XFREE(*b);
}
return err;
}
/* get normalization value */
static int montgomery_normalization(void *a, void *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
fp_montgomery_calc_normalization(a, b);
return CRYPT_OK;
}
/* reduce */
static int montgomery_reduce(void *a, void *b, void *c)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
fp_montgomery_reduce(a, b, *((fp_digit *)c));
return CRYPT_OK;
}
/* clean up */
static void montgomery_deinit(void *a)
{
XFREE(a);
}
static int exptmod(void *a, void *b, void *c, void *d)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
LTC_ARGCHK(c != NULL);
LTC_ARGCHK(d != NULL);
return tfm_to_ltc_error(fp_exptmod(a,b,c,d));
}
static int isprime(void *a, int *b)
{
LTC_ARGCHK(a != NULL);
LTC_ARGCHK(b != NULL);
*b = (fp_isprime(a) == FP_YES) ? LTC_MP_YES : LTC_MP_NO;
return CRYPT_OK;
}
#if defined(MECC) && defined(MECC_ACCEL)
static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp)
{
fp_int t1, t2;
fp_digit mp;
LTC_ARGCHK(P != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
LTC_ARGCHK(Mp != NULL);
mp = *((fp_digit*)Mp);
fp_init(&t1);
fp_init(&t2);
if (P != R) {
fp_copy(P->x, R->x);
fp_copy(P->y, R->y);
fp_copy(P->z, R->z);
}
/* t1 = Z * Z */
fp_sqr(R->z, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* Z = Y * Z */
fp_mul(R->z, R->y, R->z);
fp_montgomery_reduce(R->z, modulus, mp);
/* Z = 2Z */
fp_add(R->z, R->z, R->z);
if (fp_cmp(R->z, modulus) != FP_LT) {
fp_sub(R->z, modulus, R->z);
}
/* &t2 = X - T1 */
fp_sub(R->x, &t1, &t2);
if (fp_cmp_d(&t2, 0) == FP_LT) {
fp_add(&t2, modulus, &t2);
}
/* T1 = X + T1 */
fp_add(&t1, R->x, &t1);
if (fp_cmp(&t1, modulus) != FP_LT) {
fp_sub(&t1, modulus, &t1);
}
/* T2 = T1 * T2 */
fp_mul(&t1, &t2, &t2);
fp_montgomery_reduce(&t2, modulus, mp);
/* T1 = 2T2 */
fp_add(&t2, &t2, &t1);
if (fp_cmp(&t1, modulus) != FP_LT) {
fp_sub(&t1, modulus, &t1);
}
/* T1 = T1 + T2 */
fp_add(&t1, &t2, &t1);
if (fp_cmp(&t1, modulus) != FP_LT) {
fp_sub(&t1, modulus, &t1);
}
/* Y = 2Y */
fp_add(R->y, R->y, R->y);
if (fp_cmp(R->y, modulus) != FP_LT) {
fp_sub(R->y, modulus, R->y);
}
/* Y = Y * Y */
fp_sqr(R->y, R->y);
fp_montgomery_reduce(R->y, modulus, mp);
/* T2 = Y * Y */
fp_sqr(R->y, &t2);
fp_montgomery_reduce(&t2, modulus, mp);
/* T2 = T2/2 */
if (fp_isodd(&t2)) {
fp_add(&t2, modulus, &t2);
}
fp_div_2(&t2, &t2);
/* Y = Y * X */
fp_mul(R->y, R->x, R->y);
fp_montgomery_reduce(R->y, modulus, mp);
/* X = T1 * T1 */
fp_sqr(&t1, R->x);
fp_montgomery_reduce(R->x, modulus, mp);
/* X = X - Y */
fp_sub(R->x, R->y, R->x);
if (fp_cmp_d(R->x, 0) == FP_LT) {
fp_add(R->x, modulus, R->x);
}
/* X = X - Y */
fp_sub(R->x, R->y, R->x);
if (fp_cmp_d(R->x, 0) == FP_LT) {
fp_add(R->x, modulus, R->x);
}
/* Y = Y - X */
fp_sub(R->y, R->x, R->y);
if (fp_cmp_d(R->y, 0) == FP_LT) {
fp_add(R->y, modulus, R->y);
}
/* Y = Y * T1 */
fp_mul(R->y, &t1, R->y);
fp_montgomery_reduce(R->y, modulus, mp);
/* Y = Y - T2 */
fp_sub(R->y, &t2, R->y);
if (fp_cmp_d(R->y, 0) == FP_LT) {
fp_add(R->y, modulus, R->y);
}
return CRYPT_OK;
}
/**
Add two ECC points
@param P The point to add
@param Q The point to add
@param R [out] The destination of the double
@param modulus The modulus of the field the ECC curve is in
@param mp The "b" value from montgomery_setup()
@return CRYPT_OK on success
*/
static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp)
{
fp_int t1, t2, x, y, z;
fp_digit mp;
LTC_ARGCHK(P != NULL);
LTC_ARGCHK(Q != NULL);
LTC_ARGCHK(R != NULL);
LTC_ARGCHK(modulus != NULL);
LTC_ARGCHK(Mp != NULL);
mp = *((fp_digit*)Mp);
fp_init(&t1);
fp_init(&t2);
fp_init(&x);
fp_init(&y);
fp_init(&z);
/* should we dbl instead? */
fp_sub(modulus, Q->y, &t1);
if ( (fp_cmp(P->x, Q->x) == FP_EQ) &&
(Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) &&
(fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) {
return tfm_ecc_projective_dbl_point(P, R, modulus, Mp);
}
fp_copy(P->x, &x);
fp_copy(P->y, &y);
fp_copy(P->z, &z);
/* if Z is one then these are no-operations */
if (Q->z != NULL) {
/* T1 = Z' * Z' */
fp_sqr(Q->z, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* X = X * T1 */
fp_mul(&t1, &x, &x);
fp_montgomery_reduce(&x, modulus, mp);
/* T1 = Z' * T1 */
fp_mul(Q->z, &t1, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* Y = Y * T1 */
fp_mul(&t1, &y, &y);
fp_montgomery_reduce(&y, modulus, mp);
}
/* T1 = Z*Z */
fp_sqr(&z, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* T2 = X' * T1 */
fp_mul(Q->x, &t1, &t2);
fp_montgomery_reduce(&t2, modulus, mp);
/* T1 = Z * T1 */
fp_mul(&z, &t1, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* T1 = Y' * T1 */
fp_mul(Q->y, &t1, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* Y = Y - T1 */
fp_sub(&y, &t1, &y);
if (fp_cmp_d(&y, 0) == FP_LT) {
fp_add(&y, modulus, &y);
}
/* T1 = 2T1 */
fp_add(&t1, &t1, &t1);
if (fp_cmp(&t1, modulus) != FP_LT) {
fp_sub(&t1, modulus, &t1);
}
/* T1 = Y + T1 */
fp_add(&t1, &y, &t1);
if (fp_cmp(&t1, modulus) != FP_LT) {
fp_sub(&t1, modulus, &t1);
}
/* X = X - T2 */
fp_sub(&x, &t2, &x);
if (fp_cmp_d(&x, 0) == FP_LT) {
fp_add(&x, modulus, &x);
}
/* T2 = 2T2 */
fp_add(&t2, &t2, &t2);
if (fp_cmp(&t2, modulus) != FP_LT) {
fp_sub(&t2, modulus, &t2);
}
/* T2 = X + T2 */
fp_add(&t2, &x, &t2);
if (fp_cmp(&t2, modulus) != FP_LT) {
fp_sub(&t2, modulus, &t2);
}
/* if Z' != 1 */
if (Q->z != NULL) {
/* Z = Z * Z' */
fp_mul(&z, Q->z, &z);
fp_montgomery_reduce(&z, modulus, mp);
}
/* Z = Z * X */
fp_mul(&z, &x, &z);
fp_montgomery_reduce(&z, modulus, mp);
/* T1 = T1 * X */
fp_mul(&t1, &x, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* X = X * X */
fp_sqr(&x, &x);
fp_montgomery_reduce(&x, modulus, mp);
/* T2 = T2 * x */
fp_mul(&t2, &x, &t2);
fp_montgomery_reduce(&t2, modulus, mp);
/* T1 = T1 * X */
fp_mul(&t1, &x, &t1);
fp_montgomery_reduce(&t1, modulus, mp);
/* X = Y*Y */
fp_sqr(&y, &x);
fp_montgomery_reduce(&x, modulus, mp);
/* X = X - T2 */
fp_sub(&x, &t2, &x);
if (fp_cmp_d(&x, 0) == FP_LT) {
fp_add(&x, modulus, &x);
}
/* T2 = T2 - X */
fp_sub(&t2, &x, &t2);
if (fp_cmp_d(&t2, 0) == FP_LT) {
fp_add(&t2, modulus, &t2);
}
/* T2 = T2 - X */
fp_sub(&t2, &x, &t2);
if (fp_cmp_d(&t2, 0) == FP_LT) {
fp_add(&t2, modulus, &t2);
}
/* T2 = T2 * Y */
fp_mul(&t2, &y, &t2);
fp_montgomery_reduce(&t2, modulus, mp);
/* Y = T2 - T1 */
fp_sub(&t2, &t1, &y);
if (fp_cmp_d(&y, 0) == FP_LT) {
fp_add(&y, modulus, &y);
}
/* Y = Y/2 */
if (fp_isodd(&y)) {
fp_add(&y, modulus, &y);
}
fp_div_2(&y, &y);
fp_copy(&x, R->x);
fp_copy(&y, R->y);
fp_copy(&z, R->z);
return CRYPT_OK;
}
#endif
const ltc_math_descriptor tfm_desc = {
"TomsFastMath",
(int)DIGIT_BIT,
&init,
&init_copy,
&deinit,
&neg,
&copy,
&set_int,
&get_int,
&get_digit,
&get_digit_count,
&compare,
&compare_d,
&count_bits,
&count_lsb_bits,
&twoexpt,
&read_radix,
&write_radix,
&unsigned_size,
&unsigned_write,
&unsigned_read,
&add,
&addi,
&sub,
&subi,
&mul,
&muli,
&sqr,
&divide,
&div_2,
&modi,
&gcd,
&lcm,
&mulmod,
&sqrmod,
&invmod,
&montgomery_setup,
&montgomery_normalization,
&montgomery_reduce,
&montgomery_deinit,
&exptmod,
&isprime,
#ifdef MECC
#ifdef MECC_FP
&ltc_ecc_fp_mulmod,
#else
&ltc_ecc_mulmod,
#endif /* MECC_FP */
#ifdef MECC_ACCEL
&tfm_ecc_projective_add_point,
&tfm_ecc_projective_dbl_point,
#else
&ltc_ecc_projective_add_point,
&ltc_ecc_projective_dbl_point,
#endif /* MECC_ACCEL */
&ltc_ecc_map,
#ifdef LTC_ECC_SHAMIR
#ifdef MECC_FP
&ltc_ecc_fp_mul2add,
#else
&ltc_ecc_mul2add,
#endif /* MECC_FP */
#else
NULL,
#endif /* LTC_ECC_SHAMIR */
#else
NULL, NULL, NULL, NULL, NULL,
#endif /* MECC */
#ifdef MRSA
&rsa_make_key,
&rsa_exptmod,
#else
NULL, NULL
#endif
};
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/math/tfm_desc.c,v $ */
/* $Revision: 1.26 $ */
/* $Date: 2006/12/03 00:39:56 $ */