| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com |
| */ |
| |
| #define DESC_DEF_ONLY |
| #include "tomcrypt.h" |
| |
| #ifdef TFM_DESC |
| |
| #include <tfm.h> |
| |
| static const struct { |
| int tfm_code, ltc_code; |
| } tfm_to_ltc_codes[] = { |
| { FP_OKAY , CRYPT_OK}, |
| { FP_MEM , CRYPT_MEM}, |
| { FP_VAL , CRYPT_INVALID_ARG}, |
| }; |
| |
| /** |
| Convert a tfm error to a LTC error (Possibly the most powerful function ever! Oh wait... no) |
| @param err The error to convert |
| @return The equivalent LTC error code or CRYPT_ERROR if none found |
| */ |
| static int tfm_to_ltc_error(int err) |
| { |
| int x; |
| |
| for (x = 0; x < (int)(sizeof(tfm_to_ltc_codes)/sizeof(tfm_to_ltc_codes[0])); x++) { |
| if (err == tfm_to_ltc_codes[x].tfm_code) { |
| return tfm_to_ltc_codes[x].ltc_code; |
| } |
| } |
| return CRYPT_ERROR; |
| } |
| |
| static int init(void **a) |
| { |
| LTC_ARGCHK(a != NULL); |
| |
| *a = XCALLOC(1, sizeof(fp_int)); |
| if (*a == NULL) { |
| return CRYPT_MEM; |
| } |
| fp_init(*a); |
| return CRYPT_OK; |
| } |
| |
| static void deinit(void *a) |
| { |
| LTC_ARGCHKVD(a != NULL); |
| XFREE(a); |
| } |
| |
| static int neg(void *a, void *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_neg(((fp_int*)a), ((fp_int*)b)); |
| return CRYPT_OK; |
| } |
| |
| static int copy(void *a, void *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_copy(a, b); |
| return CRYPT_OK; |
| } |
| |
| static int init_copy(void **a, void *b) |
| { |
| if (init(a) != CRYPT_OK) { |
| return CRYPT_MEM; |
| } |
| return copy(b, *a); |
| } |
| |
| /* ---- trivial ---- */ |
| static int set_int(void *a, unsigned long b) |
| { |
| LTC_ARGCHK(a != NULL); |
| fp_set(a, b); |
| return CRYPT_OK; |
| } |
| |
| static unsigned long get_int(void *a) |
| { |
| fp_int *A; |
| LTC_ARGCHK(a != NULL); |
| A = a; |
| return A->used > 0 ? A->dp[0] : 0; |
| } |
| |
| static unsigned long get_digit(void *a, int n) |
| { |
| fp_int *A; |
| LTC_ARGCHK(a != NULL); |
| A = a; |
| return (n >= A->used || n < 0) ? 0 : A->dp[n]; |
| } |
| |
| static int get_digit_count(void *a) |
| { |
| fp_int *A; |
| LTC_ARGCHK(a != NULL); |
| A = a; |
| return A->used; |
| } |
| |
| static int compare(void *a, void *b) |
| { |
| int ret; |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| ret = fp_cmp(a, b); |
| switch (ret) { |
| case FP_LT: return LTC_MP_LT; |
| case FP_EQ: return LTC_MP_EQ; |
| case FP_GT: return LTC_MP_GT; |
| } |
| return 0; |
| } |
| |
| static int compare_d(void *a, unsigned long b) |
| { |
| int ret; |
| LTC_ARGCHK(a != NULL); |
| ret = fp_cmp_d(a, b); |
| switch (ret) { |
| case FP_LT: return LTC_MP_LT; |
| case FP_EQ: return LTC_MP_EQ; |
| case FP_GT: return LTC_MP_GT; |
| } |
| return 0; |
| } |
| |
| static int count_bits(void *a) |
| { |
| LTC_ARGCHK(a != NULL); |
| return fp_count_bits(a); |
| } |
| |
| static int count_lsb_bits(void *a) |
| { |
| LTC_ARGCHK(a != NULL); |
| return fp_cnt_lsb(a); |
| } |
| |
| static int twoexpt(void *a, int n) |
| { |
| LTC_ARGCHK(a != NULL); |
| fp_2expt(a, n); |
| return CRYPT_OK; |
| } |
| |
| /* ---- conversions ---- */ |
| |
| /* read ascii string */ |
| static int read_radix(void *a, const char *b, int radix) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| return tfm_to_ltc_error(fp_read_radix(a, (char *)b, radix)); |
| } |
| |
| /* write one */ |
| static int write_radix(void *a, char *b, int radix) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| return tfm_to_ltc_error(fp_toradix(a, b, radix)); |
| } |
| |
| /* get size as unsigned char string */ |
| static unsigned long unsigned_size(void *a) |
| { |
| LTC_ARGCHK(a != NULL); |
| return fp_unsigned_bin_size(a); |
| } |
| |
| /* store */ |
| static int unsigned_write(void *a, unsigned char *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_to_unsigned_bin(a, b); |
| return CRYPT_OK; |
| } |
| |
| /* read */ |
| static int unsigned_read(void *a, unsigned char *b, unsigned long len) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_read_unsigned_bin(a, b, len); |
| return CRYPT_OK; |
| } |
| |
| /* add */ |
| static int add(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_add(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| static int addi(void *a, unsigned long b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_add_d(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| /* sub */ |
| static int sub(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_sub(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| static int subi(void *a, unsigned long b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_sub_d(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| /* mul */ |
| static int mul(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_mul(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| static int muli(void *a, unsigned long b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_mul_d(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| /* sqr */ |
| static int sqr(void *a, void *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_sqr(a, b); |
| return CRYPT_OK; |
| } |
| |
| /* div */ |
| static int divide(void *a, void *b, void *c, void *d) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| return tfm_to_ltc_error(fp_div(a, b, c, d)); |
| } |
| |
| static int div_2(void *a, void *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_div_2(a, b); |
| return CRYPT_OK; |
| } |
| |
| /* modi */ |
| static int modi(void *a, unsigned long b, unsigned long *c) |
| { |
| fp_digit tmp; |
| int err; |
| |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(c != NULL); |
| |
| if ((err = tfm_to_ltc_error(fp_mod_d(a, b, &tmp))) != CRYPT_OK) { |
| return err; |
| } |
| *c = tmp; |
| return CRYPT_OK; |
| } |
| |
| /* gcd */ |
| static int gcd(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_gcd(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| /* lcm */ |
| static int lcm(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_lcm(a, b, c); |
| return CRYPT_OK; |
| } |
| |
| static int mulmod(void *a, void *b, void *c, void *d) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| LTC_ARGCHK(d != NULL); |
| return tfm_to_ltc_error(fp_mulmod(a,b,c,d)); |
| } |
| |
| static int sqrmod(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| return tfm_to_ltc_error(fp_sqrmod(a,b,c)); |
| } |
| |
| /* invmod */ |
| static int invmod(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| return tfm_to_ltc_error(fp_invmod(a, b, c)); |
| } |
| |
| /* setup */ |
| static int montgomery_setup(void *a, void **b) |
| { |
| int err; |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| *b = XCALLOC(1, sizeof(fp_digit)); |
| if (*b == NULL) { |
| return CRYPT_MEM; |
| } |
| if ((err = tfm_to_ltc_error(fp_montgomery_setup(a, (fp_digit *)*b))) != CRYPT_OK) { |
| XFREE(*b); |
| } |
| return err; |
| } |
| |
| /* get normalization value */ |
| static int montgomery_normalization(void *a, void *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| fp_montgomery_calc_normalization(a, b); |
| return CRYPT_OK; |
| } |
| |
| /* reduce */ |
| static int montgomery_reduce(void *a, void *b, void *c) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| fp_montgomery_reduce(a, b, *((fp_digit *)c)); |
| return CRYPT_OK; |
| } |
| |
| /* clean up */ |
| static void montgomery_deinit(void *a) |
| { |
| XFREE(a); |
| } |
| |
| static int exptmod(void *a, void *b, void *c, void *d) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| LTC_ARGCHK(c != NULL); |
| LTC_ARGCHK(d != NULL); |
| return tfm_to_ltc_error(fp_exptmod(a,b,c,d)); |
| } |
| |
| static int isprime(void *a, int *b) |
| { |
| LTC_ARGCHK(a != NULL); |
| LTC_ARGCHK(b != NULL); |
| *b = (fp_isprime(a) == FP_YES) ? LTC_MP_YES : LTC_MP_NO; |
| return CRYPT_OK; |
| } |
| |
| #if defined(MECC) && defined(MECC_ACCEL) |
| |
| static int tfm_ecc_projective_dbl_point(ecc_point *P, ecc_point *R, void *modulus, void *Mp) |
| { |
| fp_int t1, t2; |
| fp_digit mp; |
| |
| LTC_ARGCHK(P != NULL); |
| LTC_ARGCHK(R != NULL); |
| LTC_ARGCHK(modulus != NULL); |
| LTC_ARGCHK(Mp != NULL); |
| |
| mp = *((fp_digit*)Mp); |
| |
| fp_init(&t1); |
| fp_init(&t2); |
| |
| if (P != R) { |
| fp_copy(P->x, R->x); |
| fp_copy(P->y, R->y); |
| fp_copy(P->z, R->z); |
| } |
| |
| /* t1 = Z * Z */ |
| fp_sqr(R->z, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* Z = Y * Z */ |
| fp_mul(R->z, R->y, R->z); |
| fp_montgomery_reduce(R->z, modulus, mp); |
| /* Z = 2Z */ |
| fp_add(R->z, R->z, R->z); |
| if (fp_cmp(R->z, modulus) != FP_LT) { |
| fp_sub(R->z, modulus, R->z); |
| } |
| |
| /* &t2 = X - T1 */ |
| fp_sub(R->x, &t1, &t2); |
| if (fp_cmp_d(&t2, 0) == FP_LT) { |
| fp_add(&t2, modulus, &t2); |
| } |
| /* T1 = X + T1 */ |
| fp_add(&t1, R->x, &t1); |
| if (fp_cmp(&t1, modulus) != FP_LT) { |
| fp_sub(&t1, modulus, &t1); |
| } |
| /* T2 = T1 * T2 */ |
| fp_mul(&t1, &t2, &t2); |
| fp_montgomery_reduce(&t2, modulus, mp); |
| /* T1 = 2T2 */ |
| fp_add(&t2, &t2, &t1); |
| if (fp_cmp(&t1, modulus) != FP_LT) { |
| fp_sub(&t1, modulus, &t1); |
| } |
| /* T1 = T1 + T2 */ |
| fp_add(&t1, &t2, &t1); |
| if (fp_cmp(&t1, modulus) != FP_LT) { |
| fp_sub(&t1, modulus, &t1); |
| } |
| |
| /* Y = 2Y */ |
| fp_add(R->y, R->y, R->y); |
| if (fp_cmp(R->y, modulus) != FP_LT) { |
| fp_sub(R->y, modulus, R->y); |
| } |
| /* Y = Y * Y */ |
| fp_sqr(R->y, R->y); |
| fp_montgomery_reduce(R->y, modulus, mp); |
| /* T2 = Y * Y */ |
| fp_sqr(R->y, &t2); |
| fp_montgomery_reduce(&t2, modulus, mp); |
| /* T2 = T2/2 */ |
| if (fp_isodd(&t2)) { |
| fp_add(&t2, modulus, &t2); |
| } |
| fp_div_2(&t2, &t2); |
| /* Y = Y * X */ |
| fp_mul(R->y, R->x, R->y); |
| fp_montgomery_reduce(R->y, modulus, mp); |
| |
| /* X = T1 * T1 */ |
| fp_sqr(&t1, R->x); |
| fp_montgomery_reduce(R->x, modulus, mp); |
| /* X = X - Y */ |
| fp_sub(R->x, R->y, R->x); |
| if (fp_cmp_d(R->x, 0) == FP_LT) { |
| fp_add(R->x, modulus, R->x); |
| } |
| /* X = X - Y */ |
| fp_sub(R->x, R->y, R->x); |
| if (fp_cmp_d(R->x, 0) == FP_LT) { |
| fp_add(R->x, modulus, R->x); |
| } |
| |
| /* Y = Y - X */ |
| fp_sub(R->y, R->x, R->y); |
| if (fp_cmp_d(R->y, 0) == FP_LT) { |
| fp_add(R->y, modulus, R->y); |
| } |
| /* Y = Y * T1 */ |
| fp_mul(R->y, &t1, R->y); |
| fp_montgomery_reduce(R->y, modulus, mp); |
| /* Y = Y - T2 */ |
| fp_sub(R->y, &t2, R->y); |
| if (fp_cmp_d(R->y, 0) == FP_LT) { |
| fp_add(R->y, modulus, R->y); |
| } |
| |
| return CRYPT_OK; |
| } |
| |
| /** |
| Add two ECC points |
| @param P The point to add |
| @param Q The point to add |
| @param R [out] The destination of the double |
| @param modulus The modulus of the field the ECC curve is in |
| @param mp The "b" value from montgomery_setup() |
| @return CRYPT_OK on success |
| */ |
| static int tfm_ecc_projective_add_point(ecc_point *P, ecc_point *Q, ecc_point *R, void *modulus, void *Mp) |
| { |
| fp_int t1, t2, x, y, z; |
| fp_digit mp; |
| |
| LTC_ARGCHK(P != NULL); |
| LTC_ARGCHK(Q != NULL); |
| LTC_ARGCHK(R != NULL); |
| LTC_ARGCHK(modulus != NULL); |
| LTC_ARGCHK(Mp != NULL); |
| |
| mp = *((fp_digit*)Mp); |
| |
| fp_init(&t1); |
| fp_init(&t2); |
| fp_init(&x); |
| fp_init(&y); |
| fp_init(&z); |
| |
| /* should we dbl instead? */ |
| fp_sub(modulus, Q->y, &t1); |
| if ( (fp_cmp(P->x, Q->x) == FP_EQ) && |
| (Q->z != NULL && fp_cmp(P->z, Q->z) == FP_EQ) && |
| (fp_cmp(P->y, Q->y) == FP_EQ || fp_cmp(P->y, &t1) == FP_EQ)) { |
| return tfm_ecc_projective_dbl_point(P, R, modulus, Mp); |
| } |
| |
| fp_copy(P->x, &x); |
| fp_copy(P->y, &y); |
| fp_copy(P->z, &z); |
| |
| /* if Z is one then these are no-operations */ |
| if (Q->z != NULL) { |
| /* T1 = Z' * Z' */ |
| fp_sqr(Q->z, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* X = X * T1 */ |
| fp_mul(&t1, &x, &x); |
| fp_montgomery_reduce(&x, modulus, mp); |
| /* T1 = Z' * T1 */ |
| fp_mul(Q->z, &t1, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* Y = Y * T1 */ |
| fp_mul(&t1, &y, &y); |
| fp_montgomery_reduce(&y, modulus, mp); |
| } |
| |
| /* T1 = Z*Z */ |
| fp_sqr(&z, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* T2 = X' * T1 */ |
| fp_mul(Q->x, &t1, &t2); |
| fp_montgomery_reduce(&t2, modulus, mp); |
| /* T1 = Z * T1 */ |
| fp_mul(&z, &t1, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* T1 = Y' * T1 */ |
| fp_mul(Q->y, &t1, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| |
| /* Y = Y - T1 */ |
| fp_sub(&y, &t1, &y); |
| if (fp_cmp_d(&y, 0) == FP_LT) { |
| fp_add(&y, modulus, &y); |
| } |
| /* T1 = 2T1 */ |
| fp_add(&t1, &t1, &t1); |
| if (fp_cmp(&t1, modulus) != FP_LT) { |
| fp_sub(&t1, modulus, &t1); |
| } |
| /* T1 = Y + T1 */ |
| fp_add(&t1, &y, &t1); |
| if (fp_cmp(&t1, modulus) != FP_LT) { |
| fp_sub(&t1, modulus, &t1); |
| } |
| /* X = X - T2 */ |
| fp_sub(&x, &t2, &x); |
| if (fp_cmp_d(&x, 0) == FP_LT) { |
| fp_add(&x, modulus, &x); |
| } |
| /* T2 = 2T2 */ |
| fp_add(&t2, &t2, &t2); |
| if (fp_cmp(&t2, modulus) != FP_LT) { |
| fp_sub(&t2, modulus, &t2); |
| } |
| /* T2 = X + T2 */ |
| fp_add(&t2, &x, &t2); |
| if (fp_cmp(&t2, modulus) != FP_LT) { |
| fp_sub(&t2, modulus, &t2); |
| } |
| |
| /* if Z' != 1 */ |
| if (Q->z != NULL) { |
| /* Z = Z * Z' */ |
| fp_mul(&z, Q->z, &z); |
| fp_montgomery_reduce(&z, modulus, mp); |
| } |
| |
| /* Z = Z * X */ |
| fp_mul(&z, &x, &z); |
| fp_montgomery_reduce(&z, modulus, mp); |
| |
| /* T1 = T1 * X */ |
| fp_mul(&t1, &x, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| /* X = X * X */ |
| fp_sqr(&x, &x); |
| fp_montgomery_reduce(&x, modulus, mp); |
| /* T2 = T2 * x */ |
| fp_mul(&t2, &x, &t2); |
| fp_montgomery_reduce(&t2, modulus, mp); |
| /* T1 = T1 * X */ |
| fp_mul(&t1, &x, &t1); |
| fp_montgomery_reduce(&t1, modulus, mp); |
| |
| /* X = Y*Y */ |
| fp_sqr(&y, &x); |
| fp_montgomery_reduce(&x, modulus, mp); |
| /* X = X - T2 */ |
| fp_sub(&x, &t2, &x); |
| if (fp_cmp_d(&x, 0) == FP_LT) { |
| fp_add(&x, modulus, &x); |
| } |
| |
| /* T2 = T2 - X */ |
| fp_sub(&t2, &x, &t2); |
| if (fp_cmp_d(&t2, 0) == FP_LT) { |
| fp_add(&t2, modulus, &t2); |
| } |
| /* T2 = T2 - X */ |
| fp_sub(&t2, &x, &t2); |
| if (fp_cmp_d(&t2, 0) == FP_LT) { |
| fp_add(&t2, modulus, &t2); |
| } |
| /* T2 = T2 * Y */ |
| fp_mul(&t2, &y, &t2); |
| fp_montgomery_reduce(&t2, modulus, mp); |
| /* Y = T2 - T1 */ |
| fp_sub(&t2, &t1, &y); |
| if (fp_cmp_d(&y, 0) == FP_LT) { |
| fp_add(&y, modulus, &y); |
| } |
| /* Y = Y/2 */ |
| if (fp_isodd(&y)) { |
| fp_add(&y, modulus, &y); |
| } |
| fp_div_2(&y, &y); |
| |
| fp_copy(&x, R->x); |
| fp_copy(&y, R->y); |
| fp_copy(&z, R->z); |
| |
| return CRYPT_OK; |
| } |
| |
| |
| #endif |
| |
| const ltc_math_descriptor tfm_desc = { |
| |
| "TomsFastMath", |
| (int)DIGIT_BIT, |
| |
| &init, |
| &init_copy, |
| &deinit, |
| |
| &neg, |
| ©, |
| |
| &set_int, |
| &get_int, |
| &get_digit, |
| &get_digit_count, |
| &compare, |
| &compare_d, |
| &count_bits, |
| &count_lsb_bits, |
| &twoexpt, |
| |
| &read_radix, |
| &write_radix, |
| &unsigned_size, |
| &unsigned_write, |
| &unsigned_read, |
| |
| &add, |
| &addi, |
| &sub, |
| &subi, |
| &mul, |
| &muli, |
| &sqr, |
| ÷, |
| &div_2, |
| &modi, |
| &gcd, |
| &lcm, |
| |
| &mulmod, |
| &sqrmod, |
| &invmod, |
| |
| &montgomery_setup, |
| &montgomery_normalization, |
| &montgomery_reduce, |
| &montgomery_deinit, |
| |
| &exptmod, |
| &isprime, |
| |
| #ifdef MECC |
| #ifdef MECC_FP |
| <c_ecc_fp_mulmod, |
| #else |
| <c_ecc_mulmod, |
| #endif /* MECC_FP */ |
| #ifdef MECC_ACCEL |
| &tfm_ecc_projective_add_point, |
| &tfm_ecc_projective_dbl_point, |
| #else |
| <c_ecc_projective_add_point, |
| <c_ecc_projective_dbl_point, |
| #endif /* MECC_ACCEL */ |
| <c_ecc_map, |
| #ifdef LTC_ECC_SHAMIR |
| #ifdef MECC_FP |
| <c_ecc_fp_mul2add, |
| #else |
| <c_ecc_mul2add, |
| #endif /* MECC_FP */ |
| #else |
| NULL, |
| #endif /* LTC_ECC_SHAMIR */ |
| #else |
| NULL, NULL, NULL, NULL, NULL, |
| #endif /* MECC */ |
| |
| #ifdef MRSA |
| &rsa_make_key, |
| &rsa_exptmod, |
| #else |
| NULL, NULL |
| #endif |
| |
| }; |
| |
| |
| #endif |
| |
| /* $Source: /cvs/libtom/libtomcrypt/src/math/tfm_desc.c,v $ */ |
| /* $Revision: 1.26 $ */ |
| /* $Date: 2006/12/03 00:39:56 $ */ |