| #include <tommath.h> |
| #ifdef BN_MP_GCD_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| /* Greatest Common Divisor using the binary method */ |
| int mp_gcd (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int u, v; |
| int k, u_lsb, v_lsb, res; |
| |
| /* either zero than gcd is the largest */ |
| if (mp_iszero (a) == MP_YES) { |
| return mp_abs (b, c); |
| } |
| if (mp_iszero (b) == MP_YES) { |
| return mp_abs (a, c); |
| } |
| |
| /* get copies of a and b we can modify */ |
| if ((res = mp_init_copy (&u, a)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_init_copy (&v, b)) != MP_OKAY) { |
| goto LBL_U; |
| } |
| |
| /* must be positive for the remainder of the algorithm */ |
| u.sign = v.sign = MP_ZPOS; |
| |
| /* B1. Find the common power of two for u and v */ |
| u_lsb = mp_cnt_lsb(&u); |
| v_lsb = mp_cnt_lsb(&v); |
| k = MIN(u_lsb, v_lsb); |
| |
| if (k > 0) { |
| /* divide the power of two out */ |
| if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| |
| if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| } |
| |
| /* divide any remaining factors of two out */ |
| if (u_lsb != k) { |
| if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| } |
| |
| if (v_lsb != k) { |
| if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| } |
| |
| while (mp_iszero(&v) == 0) { |
| /* make sure v is the largest */ |
| if (mp_cmp_mag(&u, &v) == MP_GT) { |
| /* swap u and v to make sure v is >= u */ |
| mp_exch(&u, &v); |
| } |
| |
| /* subtract smallest from largest */ |
| if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| |
| /* Divide out all factors of two */ |
| if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| } |
| |
| /* multiply by 2**k which we divided out at the beginning */ |
| if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) { |
| goto LBL_V; |
| } |
| c->sign = MP_ZPOS; |
| res = MP_OKAY; |
| LBL_V:mp_clear (&u); |
| LBL_U:mp_clear (&v); |
| return res; |
| } |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_mp_gcd.c,v $ */ |
| /* $Revision: 1.4 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |