| #include <tommath.h> |
| #ifdef BN_MP_N_ROOT_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| /* find the n'th root of an integer |
| * |
| * Result found such that (c)**b <= a and (c+1)**b > a |
| * |
| * This algorithm uses Newton's approximation |
| * x[i+1] = x[i] - f(x[i])/f'(x[i]) |
| * which will find the root in log(N) time where |
| * each step involves a fair bit. This is not meant to |
| * find huge roots [square and cube, etc]. |
| */ |
| int mp_n_root (mp_int * a, mp_digit b, mp_int * c) |
| { |
| mp_int t1, t2, t3; |
| int res, neg; |
| |
| /* input must be positive if b is even */ |
| if ((b & 1) == 0 && a->sign == MP_NEG) { |
| return MP_VAL; |
| } |
| |
| if ((res = mp_init (&t1)) != MP_OKAY) { |
| return res; |
| } |
| |
| if ((res = mp_init (&t2)) != MP_OKAY) { |
| goto LBL_T1; |
| } |
| |
| if ((res = mp_init (&t3)) != MP_OKAY) { |
| goto LBL_T2; |
| } |
| |
| /* if a is negative fudge the sign but keep track */ |
| neg = a->sign; |
| a->sign = MP_ZPOS; |
| |
| /* t2 = 2 */ |
| mp_set (&t2, 2); |
| |
| do { |
| /* t1 = t2 */ |
| if ((res = mp_copy (&t2, &t1)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */ |
| |
| /* t3 = t1**(b-1) */ |
| if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| /* numerator */ |
| /* t2 = t1**b */ |
| if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| /* t2 = t1**b - a */ |
| if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| /* denominator */ |
| /* t3 = t1**(b-1) * b */ |
| if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| /* t3 = (t1**b - a)/(b * t1**(b-1)) */ |
| if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| } while (mp_cmp (&t1, &t2) != MP_EQ); |
| |
| /* result can be off by a few so check */ |
| for (;;) { |
| if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| |
| if (mp_cmp (&t2, a) == MP_GT) { |
| if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) { |
| goto LBL_T3; |
| } |
| } else { |
| break; |
| } |
| } |
| |
| /* reset the sign of a first */ |
| a->sign = neg; |
| |
| /* set the result */ |
| mp_exch (&t1, c); |
| |
| /* set the sign of the result */ |
| c->sign = neg; |
| |
| res = MP_OKAY; |
| |
| LBL_T3:mp_clear (&t3); |
| LBL_T2:mp_clear (&t2); |
| LBL_T1:mp_clear (&t1); |
| return res; |
| } |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_mp_n_root.c,v $ */ |
| /* $Revision: 1.3 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |