| #include <tommath.h> |
| #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| /* |
| * shifts with subtractions when the result is greater than b. |
| * |
| * The method is slightly modified to shift B unconditionally upto just under |
| * the leading bit of b. This saves alot of multiple precision shifting. |
| */ |
| int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
| { |
| int x, bits, res; |
| |
| /* how many bits of last digit does b use */ |
| bits = mp_count_bits (b) % DIGIT_BIT; |
| |
| if (b->used > 1) { |
| if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
| return res; |
| } |
| } else { |
| mp_set(a, 1); |
| bits = 1; |
| } |
| |
| |
| /* now compute C = A * B mod b */ |
| for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
| if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
| return res; |
| } |
| if (mp_cmp_mag (a, b) != MP_LT) { |
| if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { |
| return res; |
| } |
| } |
| } |
| |
| return MP_OKAY; |
| } |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_mp_montgomery_calc_normalization.c,v $ */ |
| /* $Revision: 1.3 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |