| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| #ifndef BN_H_ |
| #define BN_H_ |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <ctype.h> |
| #include <limits.h> |
| |
| #include "tommath_class.h" |
| |
| #ifndef MIN |
| #define MIN(x,y) ((x)<(y)?(x):(y)) |
| #endif |
| |
| #ifndef MAX |
| #define MAX(x,y) ((x)>(y)?(x):(y)) |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| |
| /* C++ compilers don't like assigning void * to mp_digit * */ |
| #define OPT_CAST(x) (x *) |
| |
| #else |
| |
| /* C on the other hand doesn't care */ |
| #define OPT_CAST(x) |
| |
| #endif |
| |
| |
| /* detect 64-bit mode if possible */ |
| #if defined(__x86_64__) |
| #if !(defined(MP_64BIT) && defined(MP_16BIT) && defined(MP_8BIT)) |
| #define MP_64BIT |
| #endif |
| #endif |
| |
| /* some default configurations. |
| * |
| * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits |
| * A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits |
| * |
| * At the very least a mp_digit must be able to hold 7 bits |
| * [any size beyond that is ok provided it doesn't overflow the data type] |
| */ |
| #ifdef MP_8BIT |
| typedef unsigned char mp_digit; |
| typedef unsigned short mp_word; |
| #elif defined(MP_16BIT) |
| typedef unsigned short mp_digit; |
| typedef unsigned long mp_word; |
| #elif defined(MP_64BIT) |
| /* for GCC only on supported platforms */ |
| #ifndef CRYPT |
| typedef unsigned long long ulong64; |
| typedef signed long long long64; |
| #endif |
| |
| typedef unsigned long mp_digit; |
| typedef unsigned long mp_word __attribute__ ((mode(TI))); |
| |
| #define DIGIT_BIT 60 |
| #else |
| /* this is the default case, 28-bit digits */ |
| |
| /* this is to make porting into LibTomCrypt easier :-) */ |
| #ifndef CRYPT |
| #if defined(_MSC_VER) || defined(__BORLANDC__) |
| typedef unsigned __int64 ulong64; |
| typedef signed __int64 long64; |
| #else |
| typedef unsigned long long ulong64; |
| typedef signed long long long64; |
| #endif |
| #endif |
| |
| typedef unsigned long mp_digit; |
| typedef ulong64 mp_word; |
| |
| #ifdef MP_31BIT |
| /* this is an extension that uses 31-bit digits */ |
| #define DIGIT_BIT 31 |
| #else |
| /* default case is 28-bit digits, defines MP_28BIT as a handy macro to test */ |
| #define DIGIT_BIT 28 |
| #define MP_28BIT |
| #endif |
| #endif |
| |
| /* define heap macros */ |
| #ifndef CRYPT |
| /* default to libc stuff */ |
| #ifndef XMALLOC |
| #define XMALLOC malloc |
| #define XFREE free |
| #define XREALLOC realloc |
| #define XCALLOC calloc |
| #else |
| /* prototypes for our heap functions */ |
| extern void *XMALLOC(size_t n); |
| extern void *XREALLOC(void *p, size_t n); |
| extern void *XCALLOC(size_t n, size_t s); |
| extern void XFREE(void *p); |
| #endif |
| #endif |
| |
| |
| /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */ |
| #ifndef DIGIT_BIT |
| #define DIGIT_BIT ((int)((CHAR_BIT * sizeof(mp_digit) - 1))) /* bits per digit */ |
| #endif |
| |
| #define MP_DIGIT_BIT DIGIT_BIT |
| #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) |
| #define MP_DIGIT_MAX MP_MASK |
| |
| /* equalities */ |
| #define MP_LT -1 /* less than */ |
| #define MP_EQ 0 /* equal to */ |
| #define MP_GT 1 /* greater than */ |
| |
| #define MP_ZPOS 0 /* positive integer */ |
| #define MP_NEG 1 /* negative */ |
| |
| #define MP_OKAY 0 /* ok result */ |
| #define MP_MEM -2 /* out of mem */ |
| #define MP_VAL -3 /* invalid input */ |
| #define MP_RANGE MP_VAL |
| |
| #define MP_YES 1 /* yes response */ |
| #define MP_NO 0 /* no response */ |
| |
| /* Primality generation flags */ |
| #define LTM_PRIME_BBS 0x0001 /* BBS style prime */ |
| #define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */ |
| #define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */ |
| |
| typedef int mp_err; |
| |
| /* you'll have to tune these... */ |
| extern int KARATSUBA_MUL_CUTOFF, |
| KARATSUBA_SQR_CUTOFF, |
| TOOM_MUL_CUTOFF, |
| TOOM_SQR_CUTOFF; |
| |
| /* define this to use lower memory usage routines (exptmods mostly) */ |
| /* #define MP_LOW_MEM */ |
| |
| /* default precision */ |
| #ifndef MP_PREC |
| #ifndef MP_LOW_MEM |
| #define MP_PREC 32 /* default digits of precision */ |
| #else |
| #define MP_PREC 8 /* default digits of precision */ |
| #endif |
| #endif |
| |
| /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ |
| #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) |
| |
| /* the infamous mp_int structure */ |
| typedef struct { |
| int used, alloc, sign; |
| mp_digit *dp; |
| } mp_int; |
| |
| /* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */ |
| typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat); |
| |
| |
| #define USED(m) ((m)->used) |
| #define DIGIT(m,k) ((m)->dp[(k)]) |
| #define SIGN(m) ((m)->sign) |
| |
| /* error code to char* string */ |
| char *mp_error_to_string(int code); |
| |
| /* ---> init and deinit bignum functions <--- */ |
| /* init a bignum */ |
| int mp_init(mp_int *a); |
| |
| /* free a bignum */ |
| void mp_clear(mp_int *a); |
| |
| /* init a null terminated series of arguments */ |
| int mp_init_multi(mp_int *mp, ...); |
| |
| /* clear a null terminated series of arguments */ |
| void mp_clear_multi(mp_int *mp, ...); |
| |
| /* exchange two ints */ |
| void mp_exch(mp_int *a, mp_int *b); |
| |
| /* shrink ram required for a bignum */ |
| int mp_shrink(mp_int *a); |
| |
| /* grow an int to a given size */ |
| int mp_grow(mp_int *a, int size); |
| |
| /* init to a given number of digits */ |
| int mp_init_size(mp_int *a, int size); |
| |
| /* ---> Basic Manipulations <--- */ |
| #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) |
| #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) |
| #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) |
| |
| /* set to zero */ |
| void mp_zero(mp_int *a); |
| |
| /* set to a digit */ |
| void mp_set(mp_int *a, mp_digit b); |
| |
| /* set a 32-bit const */ |
| int mp_set_int(mp_int *a, unsigned long b); |
| |
| /* get a 32-bit value */ |
| unsigned long mp_get_int(mp_int * a); |
| |
| /* initialize and set a digit */ |
| int mp_init_set (mp_int * a, mp_digit b); |
| |
| /* initialize and set 32-bit value */ |
| int mp_init_set_int (mp_int * a, unsigned long b); |
| |
| /* copy, b = a */ |
| int mp_copy(mp_int *a, mp_int *b); |
| |
| /* inits and copies, a = b */ |
| int mp_init_copy(mp_int *a, mp_int *b); |
| |
| /* trim unused digits */ |
| void mp_clamp(mp_int *a); |
| |
| /* ---> digit manipulation <--- */ |
| |
| /* right shift by "b" digits */ |
| void mp_rshd(mp_int *a, int b); |
| |
| /* left shift by "b" digits */ |
| int mp_lshd(mp_int *a, int b); |
| |
| /* c = a / 2**b */ |
| int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d); |
| |
| /* b = a/2 */ |
| int mp_div_2(mp_int *a, mp_int *b); |
| |
| /* c = a * 2**b */ |
| int mp_mul_2d(mp_int *a, int b, mp_int *c); |
| |
| /* b = a*2 */ |
| int mp_mul_2(mp_int *a, mp_int *b); |
| |
| /* c = a mod 2**d */ |
| int mp_mod_2d(mp_int *a, int b, mp_int *c); |
| |
| /* computes a = 2**b */ |
| int mp_2expt(mp_int *a, int b); |
| |
| /* Counts the number of lsbs which are zero before the first zero bit */ |
| int mp_cnt_lsb(mp_int *a); |
| |
| /* I Love Earth! */ |
| |
| /* makes a pseudo-random int of a given size */ |
| int mp_rand(mp_int *a, int digits); |
| |
| /* ---> binary operations <--- */ |
| /* c = a XOR b */ |
| int mp_xor(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = a OR b */ |
| int mp_or(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = a AND b */ |
| int mp_and(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* ---> Basic arithmetic <--- */ |
| |
| /* b = -a */ |
| int mp_neg(mp_int *a, mp_int *b); |
| |
| /* b = |a| */ |
| int mp_abs(mp_int *a, mp_int *b); |
| |
| /* compare a to b */ |
| int mp_cmp(mp_int *a, mp_int *b); |
| |
| /* compare |a| to |b| */ |
| int mp_cmp_mag(mp_int *a, mp_int *b); |
| |
| /* c = a + b */ |
| int mp_add(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = a - b */ |
| int mp_sub(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = a * b */ |
| int mp_mul(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* b = a*a */ |
| int mp_sqr(mp_int *a, mp_int *b); |
| |
| /* a/b => cb + d == a */ |
| int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
| |
| /* c = a mod b, 0 <= c < b */ |
| int mp_mod(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* ---> single digit functions <--- */ |
| |
| /* compare against a single digit */ |
| int mp_cmp_d(mp_int *a, mp_digit b); |
| |
| /* c = a + b */ |
| int mp_add_d(mp_int *a, mp_digit b, mp_int *c); |
| |
| /* c = a - b */ |
| int mp_sub_d(mp_int *a, mp_digit b, mp_int *c); |
| |
| /* c = a * b */ |
| int mp_mul_d(mp_int *a, mp_digit b, mp_int *c); |
| |
| /* a/b => cb + d == a */ |
| int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d); |
| |
| /* a/3 => 3c + d == a */ |
| int mp_div_3(mp_int *a, mp_int *c, mp_digit *d); |
| |
| /* c = a**b */ |
| int mp_expt_d(mp_int *a, mp_digit b, mp_int *c); |
| |
| /* c = a mod b, 0 <= c < b */ |
| int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c); |
| |
| /* ---> number theory <--- */ |
| |
| /* d = a + b (mod c) */ |
| int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
| |
| /* d = a - b (mod c) */ |
| int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
| |
| /* d = a * b (mod c) */ |
| int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
| |
| /* c = a * a (mod b) */ |
| int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = 1/a (mod b) */ |
| int mp_invmod(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* c = (a, b) */ |
| int mp_gcd(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* produces value such that U1*a + U2*b = U3 */ |
| int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3); |
| |
| /* c = [a, b] or (a*b)/(a, b) */ |
| int mp_lcm(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* finds one of the b'th root of a, such that |c|**b <= |a| |
| * |
| * returns error if a < 0 and b is even |
| */ |
| int mp_n_root(mp_int *a, mp_digit b, mp_int *c); |
| |
| /* special sqrt algo */ |
| int mp_sqrt(mp_int *arg, mp_int *ret); |
| |
| /* is number a square? */ |
| int mp_is_square(mp_int *arg, int *ret); |
| |
| /* computes the jacobi c = (a | n) (or Legendre if b is prime) */ |
| int mp_jacobi(mp_int *a, mp_int *n, int *c); |
| |
| /* used to setup the Barrett reduction for a given modulus b */ |
| int mp_reduce_setup(mp_int *a, mp_int *b); |
| |
| /* Barrett Reduction, computes a (mod b) with a precomputed value c |
| * |
| * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely |
| * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code]. |
| */ |
| int mp_reduce(mp_int *a, mp_int *b, mp_int *c); |
| |
| /* setups the montgomery reduction */ |
| int mp_montgomery_setup(mp_int *a, mp_digit *mp); |
| |
| /* computes a = B**n mod b without division or multiplication useful for |
| * normalizing numbers in a Montgomery system. |
| */ |
| int mp_montgomery_calc_normalization(mp_int *a, mp_int *b); |
| |
| /* computes x/R == x (mod N) via Montgomery Reduction */ |
| int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); |
| |
| /* returns 1 if a is a valid DR modulus */ |
| int mp_dr_is_modulus(mp_int *a); |
| |
| /* sets the value of "d" required for mp_dr_reduce */ |
| void mp_dr_setup(mp_int *a, mp_digit *d); |
| |
| /* reduces a modulo b using the Diminished Radix method */ |
| int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp); |
| |
| /* returns true if a can be reduced with mp_reduce_2k */ |
| int mp_reduce_is_2k(mp_int *a); |
| |
| /* determines k value for 2k reduction */ |
| int mp_reduce_2k_setup(mp_int *a, mp_digit *d); |
| |
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ |
| int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d); |
| |
| /* returns true if a can be reduced with mp_reduce_2k_l */ |
| int mp_reduce_is_2k_l(mp_int *a); |
| |
| /* determines k value for 2k reduction */ |
| int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); |
| |
| /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */ |
| int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); |
| |
| /* d = a**b (mod c) */ |
| int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d); |
| |
| /* ---> Primes <--- */ |
| |
| /* number of primes */ |
| #ifdef MP_8BIT |
| #define PRIME_SIZE 31 |
| #else |
| #define PRIME_SIZE 256 |
| #endif |
| |
| /* table of first PRIME_SIZE primes */ |
| extern const mp_digit ltm_prime_tab[]; |
| |
| /* result=1 if a is divisible by one of the first PRIME_SIZE primes */ |
| int mp_prime_is_divisible(mp_int *a, int *result); |
| |
| /* performs one Fermat test of "a" using base "b". |
| * Sets result to 0 if composite or 1 if probable prime |
| */ |
| int mp_prime_fermat(mp_int *a, mp_int *b, int *result); |
| |
| /* performs one Miller-Rabin test of "a" using base "b". |
| * Sets result to 0 if composite or 1 if probable prime |
| */ |
| int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result); |
| |
| /* This gives [for a given bit size] the number of trials required |
| * such that Miller-Rabin gives a prob of failure lower than 2^-96 |
| */ |
| int mp_prime_rabin_miller_trials(int size); |
| |
| /* performs t rounds of Miller-Rabin on "a" using the first |
| * t prime bases. Also performs an initial sieve of trial |
| * division. Determines if "a" is prime with probability |
| * of error no more than (1/4)**t. |
| * |
| * Sets result to 1 if probably prime, 0 otherwise |
| */ |
| int mp_prime_is_prime(mp_int *a, int t, int *result); |
| |
| /* finds the next prime after the number "a" using "t" trials |
| * of Miller-Rabin. |
| * |
| * bbs_style = 1 means the prime must be congruent to 3 mod 4 |
| */ |
| int mp_prime_next_prime(mp_int *a, int t, int bbs_style); |
| |
| /* makes a truly random prime of a given size (bytes), |
| * call with bbs = 1 if you want it to be congruent to 3 mod 4 |
| * |
| * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
| * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
| * so it can be NULL |
| * |
| * The prime generated will be larger than 2^(8*size). |
| */ |
| #define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat) |
| |
| /* makes a truly random prime of a given size (bits), |
| * |
| * Flags are as follows: |
| * |
| * LTM_PRIME_BBS - make prime congruent to 3 mod 4 |
| * LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS) |
| * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero |
| * LTM_PRIME_2MSB_ON - make the 2nd highest bit one |
| * |
| * You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can |
| * have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself |
| * so it can be NULL |
| * |
| */ |
| int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat); |
| |
| /* ---> radix conversion <--- */ |
| int mp_count_bits(mp_int *a); |
| |
| int mp_unsigned_bin_size(mp_int *a); |
| int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c); |
| int mp_to_unsigned_bin(mp_int *a, unsigned char *b); |
| int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); |
| |
| int mp_signed_bin_size(mp_int *a); |
| int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c); |
| int mp_to_signed_bin(mp_int *a, unsigned char *b); |
| int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen); |
| |
| int mp_read_radix(mp_int *a, const char *str, int radix); |
| int mp_toradix(mp_int *a, char *str, int radix); |
| int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen); |
| int mp_radix_size(mp_int *a, int radix, int *size); |
| |
| int mp_fread(mp_int *a, int radix, FILE *stream); |
| int mp_fwrite(mp_int *a, int radix, FILE *stream); |
| |
| #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len)) |
| #define mp_raw_size(mp) mp_signed_bin_size(mp) |
| #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str)) |
| #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len)) |
| #define mp_mag_size(mp) mp_unsigned_bin_size(mp) |
| #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str)) |
| |
| #define mp_tobinary(M, S) mp_toradix((M), (S), 2) |
| #define mp_tooctal(M, S) mp_toradix((M), (S), 8) |
| #define mp_todecimal(M, S) mp_toradix((M), (S), 10) |
| #define mp_tohex(M, S) mp_toradix((M), (S), 16) |
| |
| /* lowlevel functions, do not call! */ |
| int s_mp_add(mp_int *a, mp_int *b, mp_int *c); |
| int s_mp_sub(mp_int *a, mp_int *b, mp_int *c); |
| #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) |
| int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
| int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
| int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
| int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs); |
| int fast_s_mp_sqr(mp_int *a, mp_int *b); |
| int s_mp_sqr(mp_int *a, mp_int *b); |
| int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c); |
| int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c); |
| int mp_karatsuba_sqr(mp_int *a, mp_int *b); |
| int mp_toom_sqr(mp_int *a, mp_int *b); |
| int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c); |
| int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c); |
| int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp); |
| int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode); |
| int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int mode); |
| void bn_reverse(unsigned char *s, int len); |
| |
| extern const char *mp_s_rmap; |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif |
| |
| |
| /* $Source: /cvs/libtom/libtommath/tommath.h,v $ */ |
| /* $Revision: 1.8 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |