| #include <tommath.h> |
| #ifdef BN_MP_KARATSUBA_MUL_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| /* c = |a| * |b| using Karatsuba Multiplication using |
| * three half size multiplications |
| * |
| * Let B represent the radix [e.g. 2**DIGIT_BIT] and |
| * let n represent half of the number of digits in |
| * the min(a,b) |
| * |
| * a = a1 * B**n + a0 |
| * b = b1 * B**n + b0 |
| * |
| * Then, a * b => |
| a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0 |
| * |
| * Note that a1b1 and a0b0 are used twice and only need to be |
| * computed once. So in total three half size (half # of |
| * digit) multiplications are performed, a0b0, a1b1 and |
| * (a1+b1)(a0+b0) |
| * |
| * Note that a multiplication of half the digits requires |
| * 1/4th the number of single precision multiplications so in |
| * total after one call 25% of the single precision multiplications |
| * are saved. Note also that the call to mp_mul can end up back |
| * in this function if the a0, a1, b0, or b1 are above the threshold. |
| * This is known as divide-and-conquer and leads to the famous |
| * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than |
| * the standard O(N**2) that the baseline/comba methods use. |
| * Generally though the overhead of this method doesn't pay off |
| * until a certain size (N ~ 80) is reached. |
| */ |
| int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x0, x1, y0, y1, t1, x0y0, x1y1; |
| int B, err; |
| |
| /* default the return code to an error */ |
| err = MP_MEM; |
| |
| /* min # of digits */ |
| B = MIN (a->used, b->used); |
| |
| /* now divide in two */ |
| B = B >> 1; |
| |
| /* init copy all the temps */ |
| if (mp_init_size (&x0, B) != MP_OKAY) |
| goto ERR; |
| if (mp_init_size (&x1, a->used - B) != MP_OKAY) |
| goto X0; |
| if (mp_init_size (&y0, B) != MP_OKAY) |
| goto X1; |
| if (mp_init_size (&y1, b->used - B) != MP_OKAY) |
| goto Y0; |
| |
| /* init temps */ |
| if (mp_init_size (&t1, B * 2) != MP_OKAY) |
| goto Y1; |
| if (mp_init_size (&x0y0, B * 2) != MP_OKAY) |
| goto T1; |
| if (mp_init_size (&x1y1, B * 2) != MP_OKAY) |
| goto X0Y0; |
| |
| /* now shift the digits */ |
| x0.used = y0.used = B; |
| x1.used = a->used - B; |
| y1.used = b->used - B; |
| |
| { |
| register int x; |
| register mp_digit *tmpa, *tmpb, *tmpx, *tmpy; |
| |
| /* we copy the digits directly instead of using higher level functions |
| * since we also need to shift the digits |
| */ |
| tmpa = a->dp; |
| tmpb = b->dp; |
| |
| tmpx = x0.dp; |
| tmpy = y0.dp; |
| for (x = 0; x < B; x++) { |
| *tmpx++ = *tmpa++; |
| *tmpy++ = *tmpb++; |
| } |
| |
| tmpx = x1.dp; |
| for (x = B; x < a->used; x++) { |
| *tmpx++ = *tmpa++; |
| } |
| |
| tmpy = y1.dp; |
| for (x = B; x < b->used; x++) { |
| *tmpy++ = *tmpb++; |
| } |
| } |
| |
| /* only need to clamp the lower words since by definition the |
| * upper words x1/y1 must have a known number of digits |
| */ |
| mp_clamp (&x0); |
| mp_clamp (&y0); |
| |
| /* now calc the products x0y0 and x1y1 */ |
| /* after this x0 is no longer required, free temp [x0==t2]! */ |
| if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) |
| goto X1Y1; /* x0y0 = x0*y0 */ |
| if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY) |
| goto X1Y1; /* x1y1 = x1*y1 */ |
| |
| /* now calc x1+x0 and y1+y0 */ |
| if (s_mp_add (&x1, &x0, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = x1 - x0 */ |
| if (s_mp_add (&y1, &y0, &x0) != MP_OKAY) |
| goto X1Y1; /* t2 = y1 - y0 */ |
| if (mp_mul (&t1, &x0, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */ |
| |
| /* add x0y0 */ |
| if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY) |
| goto X1Y1; /* t2 = x0y0 + x1y1 */ |
| if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */ |
| |
| /* shift by B */ |
| if (mp_lshd (&t1, B) != MP_OKAY) |
| goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */ |
| if (mp_lshd (&x1y1, B * 2) != MP_OKAY) |
| goto X1Y1; /* x1y1 = x1y1 << 2*B */ |
| |
| if (mp_add (&x0y0, &t1, &t1) != MP_OKAY) |
| goto X1Y1; /* t1 = x0y0 + t1 */ |
| if (mp_add (&t1, &x1y1, c) != MP_OKAY) |
| goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */ |
| |
| /* Algorithm succeeded set the return code to MP_OKAY */ |
| err = MP_OKAY; |
| |
| X1Y1:mp_clear (&x1y1); |
| X0Y0:mp_clear (&x0y0); |
| T1:mp_clear (&t1); |
| Y1:mp_clear (&y1); |
| Y0:mp_clear (&y0); |
| X1:mp_clear (&x1); |
| X0:mp_clear (&x0); |
| ERR: |
| return err; |
| } |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */ |
| /* $Revision: 1.5 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |