| #include <tomcrypt_test.h> |
| |
| prng_state yarrow_prng; |
| |
| struct list results[100]; |
| int no_results; |
| int sorter(const void *a, const void *b) |
| { |
| const struct list *A, *B; |
| A = a; |
| B = b; |
| if (A->avg < B->avg) return -1; |
| if (A->avg > B->avg) return 1; |
| return 0; |
| } |
| |
| void tally_results(int type) |
| { |
| int x; |
| |
| /* qsort the results */ |
| qsort(results, no_results, sizeof(struct list), &sorter); |
| |
| fprintf(stderr, "\n"); |
| if (type == 0) { |
| for (x = 0; x < no_results; x++) { |
| fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1); |
| } |
| } else if (type == 1) { |
| for (x = 0; x < no_results; x++) { |
| printf |
| ("%-20s[%3d]: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2); |
| } |
| } else { |
| for (x = 0; x < no_results; x++) { |
| printf |
| ("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000); |
| } |
| } |
| } |
| |
| /* RDTSC from Scott Duplichan */ |
| ulong64 rdtsc (void) |
| { |
| #if defined __GNUC__ && !defined(LTC_NO_ASM) |
| #ifdef INTEL_CC |
| ulong64 a; |
| asm ( " rdtsc ":"=A"(a)); |
| return a; |
| #elif defined(__i386__) || defined(__x86_64__) |
| ulong64 a; |
| asm __volatile__ ("rdtsc\nmovl %%eax,(%0)\nmovl %%edx,4(%0)\n"::"r"(&a):"%eax","%edx"); |
| return a; |
| #elif defined(LTC_PPC32) || defined(TFM_PPC32) |
| unsigned long a, b; |
| __asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b)); |
| return (((ulong64)b) << 32ULL) | ((ulong64)a); |
| #elif defined(__ia64__) /* gcc-IA64 version */ |
| unsigned long result; |
| __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); |
| while (__builtin_expect ((int) result == -1, 0)) |
| __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory"); |
| return result; |
| #elif defined(__sparc__) |
| #if defined(__arch64__) |
| ulong64 a; |
| asm volatile("rd %%tick,%0" : "=r" (a)); |
| return a; |
| #else |
| register unsigned long x, y; |
| __asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y)); |
| return ((unsigned long long) x << 32) | y; |
| #endif |
| #else |
| return XCLOCK(); |
| #endif |
| |
| /* Microsoft and Intel Windows compilers */ |
| #elif defined _M_IX86 && !defined(LTC_NO_ASM) |
| __asm rdtsc |
| #elif defined _M_AMD64 && !defined(LTC_NO_ASM) |
| return __rdtsc (); |
| #elif defined _M_IA64 && !defined(LTC_NO_ASM) |
| #if defined __INTEL_COMPILER |
| #include <ia64intrin.h> |
| #endif |
| return __getReg (3116); |
| #else |
| return XCLOCK(); |
| #endif |
| } |
| |
| static ulong64 timer, skew = 0; |
| |
| void t_start(void) |
| { |
| timer = rdtsc(); |
| } |
| |
| ulong64 t_read(void) |
| { |
| return rdtsc() - timer; |
| } |
| |
| void init_timer(void) |
| { |
| ulong64 c1, c2, t1, t2, t3; |
| unsigned long y1; |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < TIMES*100; y1++) { |
| t_start(); |
| t1 = t_read(); |
| t3 = t_read(); |
| t2 = (t_read() - t1)>>1; |
| |
| c1 = (t1 > c1) ? t1 : c1; |
| c2 = (t2 > c2) ? t2 : c2; |
| } |
| skew = c2 - c1; |
| fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew); |
| } |
| |
| void reg_algs(void) |
| { |
| int err; |
| #ifdef RIJNDAEL |
| register_cipher (&aes_desc); |
| #endif |
| #ifdef BLOWFISH |
| register_cipher (&blowfish_desc); |
| #endif |
| #ifdef XTEA |
| register_cipher (&xtea_desc); |
| #endif |
| #ifdef RC5 |
| register_cipher (&rc5_desc); |
| #endif |
| #ifdef RC6 |
| register_cipher (&rc6_desc); |
| #endif |
| #ifdef SAFERP |
| register_cipher (&saferp_desc); |
| #endif |
| #ifdef TWOFISH |
| register_cipher (&twofish_desc); |
| #endif |
| #ifdef SAFER |
| register_cipher (&safer_k64_desc); |
| register_cipher (&safer_sk64_desc); |
| register_cipher (&safer_k128_desc); |
| register_cipher (&safer_sk128_desc); |
| #endif |
| #ifdef RC2 |
| register_cipher (&rc2_desc); |
| #endif |
| #ifdef DES |
| register_cipher (&des_desc); |
| register_cipher (&des3_desc); |
| #endif |
| #ifdef CAST5 |
| register_cipher (&cast5_desc); |
| #endif |
| #ifdef NOEKEON |
| register_cipher (&noekeon_desc); |
| #endif |
| #ifdef SKIPJACK |
| register_cipher (&skipjack_desc); |
| #endif |
| #ifdef KHAZAD |
| register_cipher (&khazad_desc); |
| #endif |
| #ifdef ANUBIS |
| register_cipher (&anubis_desc); |
| #endif |
| #ifdef KSEED |
| register_cipher (&kseed_desc); |
| #endif |
| #ifdef LTC_KASUMI |
| register_cipher (&kasumi_desc); |
| #endif |
| |
| #ifdef TIGER |
| register_hash (&tiger_desc); |
| #endif |
| #ifdef MD2 |
| register_hash (&md2_desc); |
| #endif |
| #ifdef MD4 |
| register_hash (&md4_desc); |
| #endif |
| #ifdef MD5 |
| register_hash (&md5_desc); |
| #endif |
| #ifdef SHA1 |
| register_hash (&sha1_desc); |
| #endif |
| #ifdef SHA224 |
| register_hash (&sha224_desc); |
| #endif |
| #ifdef SHA256 |
| register_hash (&sha256_desc); |
| #endif |
| #ifdef SHA384 |
| register_hash (&sha384_desc); |
| #endif |
| #ifdef SHA512 |
| register_hash (&sha512_desc); |
| #endif |
| #ifdef RIPEMD128 |
| register_hash (&rmd128_desc); |
| #endif |
| #ifdef RIPEMD160 |
| register_hash (&rmd160_desc); |
| #endif |
| #ifdef RIPEMD256 |
| register_hash (&rmd256_desc); |
| #endif |
| #ifdef RIPEMD320 |
| register_hash (&rmd320_desc); |
| #endif |
| #ifdef WHIRLPOOL |
| register_hash (&whirlpool_desc); |
| #endif |
| #ifdef CHC_HASH |
| register_hash(&chc_desc); |
| if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) { |
| fprintf(stderr, "chc_register error: %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| #endif |
| |
| |
| #ifndef YARROW |
| #error This demo requires Yarrow. |
| #endif |
| register_prng(&yarrow_desc); |
| #ifdef FORTUNA |
| register_prng(&fortuna_desc); |
| #endif |
| #ifdef RC4 |
| register_prng(&rc4_desc); |
| #endif |
| #ifdef SOBER128 |
| register_prng(&sober128_desc); |
| #endif |
| |
| if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) { |
| fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| } |
| |
| int time_keysched(void) |
| { |
| unsigned long x, y1; |
| ulong64 t1, c1; |
| symmetric_key skey; |
| int kl; |
| int (*func) (const unsigned char *, int , int , symmetric_key *); |
| unsigned char key[MAXBLOCKSIZE]; |
| |
| fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n"); |
| no_results = 0; |
| for (x = 0; cipher_descriptor[x].name != NULL; x++) { |
| #define DO1(k) func(k, kl, 0, &skey); |
| |
| func = cipher_descriptor[x].setup; |
| kl = cipher_descriptor[x].min_key_length; |
| c1 = (ulong64)-1; |
| for (y1 = 0; y1 < KTIMES; y1++) { |
| yarrow_read(key, kl, &yarrow_prng); |
| t_start(); |
| DO1(key); |
| t1 = t_read(); |
| c1 = (t1 > c1) ? c1 : t1; |
| } |
| t1 = c1 - skew; |
| results[no_results].spd1 = results[no_results].avg = t1; |
| results[no_results++].id = x; |
| fprintf(stderr, "."); fflush(stdout); |
| |
| #undef DO1 |
| } |
| tally_results(0); |
| |
| return 0; |
| } |
| |
| int time_cipher(void) |
| { |
| unsigned long x, y1; |
| ulong64 t1, t2, c1, c2, a1, a2; |
| symmetric_ECB ecb; |
| unsigned char key[MAXBLOCKSIZE], pt[4096]; |
| int err; |
| |
| fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n"); |
| no_results = 0; |
| for (x = 0; cipher_descriptor[x].name != NULL; x++) { |
| ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb); |
| |
| /* sanity check on cipher */ |
| if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| #define DO1 ecb_encrypt(pt, pt, sizeof(pt), &ecb); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a1 = c2 - c1 - skew; |
| |
| #undef DO1 |
| #undef DO2 |
| #define DO1 ecb_decrypt(pt, pt, sizeof(pt), &ecb); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a2 = c2 - c1 - skew; |
| ecb_done(&ecb); |
| |
| results[no_results].id = x; |
| results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; |
| ++no_results; |
| fprintf(stderr, "."); fflush(stdout); |
| |
| #undef DO2 |
| #undef DO1 |
| } |
| tally_results(1); |
| |
| return 0; |
| } |
| |
| #ifdef LTC_CBC_MODE |
| int time_cipher2(void) |
| { |
| unsigned long x, y1; |
| ulong64 t1, t2, c1, c2, a1, a2; |
| symmetric_CBC cbc; |
| unsigned char key[MAXBLOCKSIZE], pt[4096]; |
| int err; |
| |
| fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n"); |
| no_results = 0; |
| for (x = 0; cipher_descriptor[x].name != NULL; x++) { |
| cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc); |
| |
| /* sanity check on cipher */ |
| if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| #define DO1 cbc_encrypt(pt, pt, sizeof(pt), &cbc); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a1 = c2 - c1 - skew; |
| |
| #undef DO1 |
| #undef DO2 |
| #define DO1 cbc_decrypt(pt, pt, sizeof(pt), &cbc); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a2 = c2 - c1 - skew; |
| cbc_done(&cbc); |
| |
| results[no_results].id = x; |
| results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; |
| ++no_results; |
| fprintf(stderr, "."); fflush(stdout); |
| |
| #undef DO2 |
| #undef DO1 |
| } |
| tally_results(1); |
| |
| return 0; |
| } |
| #else |
| int time_cipher2(void) { fprintf(stderr, "NO CBC\n"); return 0; } |
| #endif |
| |
| #ifdef LTC_CTR_MODE |
| int time_cipher3(void) |
| { |
| unsigned long x, y1; |
| ulong64 t1, t2, c1, c2, a1, a2; |
| symmetric_CTR ctr; |
| unsigned char key[MAXBLOCKSIZE], pt[4096]; |
| int err; |
| |
| fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n"); |
| no_results = 0; |
| for (x = 0; cipher_descriptor[x].name != NULL; x++) { |
| ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr); |
| |
| /* sanity check on cipher */ |
| if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| #define DO1 ctr_encrypt(pt, pt, sizeof(pt), &ctr); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a1 = c2 - c1 - skew; |
| |
| #undef DO1 |
| #undef DO2 |
| #define DO1 ctr_decrypt(pt, pt, sizeof(pt), &ctr); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a2 = c2 - c1 - skew; |
| ctr_done(&ctr); |
| |
| results[no_results].id = x; |
| results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; |
| ++no_results; |
| fprintf(stderr, "."); fflush(stdout); |
| |
| #undef DO2 |
| #undef DO1 |
| } |
| tally_results(1); |
| |
| return 0; |
| } |
| #else |
| int time_cipher3(void) { fprintf(stderr, "NO CTR\n"); return 0; } |
| #endif |
| |
| #ifdef LTC_LRW_MODE |
| int time_cipher4(void) |
| { |
| unsigned long x, y1; |
| ulong64 t1, t2, c1, c2, a1, a2; |
| symmetric_LRW lrw; |
| unsigned char key[MAXBLOCKSIZE], pt[4096]; |
| int err; |
| |
| fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n"); |
| no_results = 0; |
| for (x = 0; cipher_descriptor[x].name != NULL; x++) { |
| if (cipher_descriptor[x].block_length != 16) continue; |
| lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw); |
| |
| /* sanity check on cipher */ |
| if ((err = cipher_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| #define DO1 lrw_encrypt(pt, pt, sizeof(pt), &lrw); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a1 = c2 - c1 - skew; |
| |
| #undef DO1 |
| #undef DO2 |
| #define DO1 lrw_decrypt(pt, pt, sizeof(pt), &lrw); |
| #define DO2 DO1 DO1 |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < 100; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read(); |
| t2 -= t1; |
| |
| c1 = (t1 > c1 ? c1 : t1); |
| c2 = (t2 > c2 ? c2 : t2); |
| } |
| a2 = c2 - c1 - skew; |
| |
| lrw_done(&lrw); |
| |
| results[no_results].id = x; |
| results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length); |
| results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2; |
| ++no_results; |
| fprintf(stderr, "."); fflush(stdout); |
| |
| #undef DO2 |
| #undef DO1 |
| } |
| tally_results(1); |
| |
| return 0; |
| } |
| #else |
| int time_cipher4(void) { fprintf(stderr, "NO LRW\n"); return 0; } |
| #endif |
| |
| |
| int time_hash(void) |
| { |
| unsigned long x, y1, len; |
| ulong64 t1, t2, c1, c2; |
| hash_state md; |
| int (*func)(hash_state *, const unsigned char *, unsigned long), err; |
| unsigned char pt[MAXBLOCKSIZE]; |
| |
| |
| fprintf(stderr, "\n\nHASH Time Trials for:\n"); |
| no_results = 0; |
| for (x = 0; hash_descriptor[x].name != NULL; x++) { |
| |
| /* sanity check on hash */ |
| if ((err = hash_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| hash_descriptor[x].init(&md); |
| |
| #define DO1 func(&md,pt,len); |
| #define DO2 DO1 DO1 |
| |
| func = hash_descriptor[x].process; |
| len = hash_descriptor[x].blocksize; |
| |
| c1 = c2 = (ulong64)-1; |
| for (y1 = 0; y1 < TIMES; y1++) { |
| t_start(); |
| DO1; |
| t1 = t_read(); |
| DO2; |
| t2 = t_read() - t1; |
| c1 = (t1 > c1) ? c1 : t1; |
| c2 = (t2 > c2) ? c2 : t2; |
| } |
| t1 = c2 - c1 - skew; |
| t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize); |
| results[no_results].id = x; |
| results[no_results].spd1 = results[no_results].avg = t1; |
| ++no_results; |
| fprintf(stderr, "."); fflush(stdout); |
| #undef DO2 |
| #undef DO1 |
| } |
| tally_results(2); |
| |
| return 0; |
| } |
| |
| #undef MPI |
| /*#warning you need an mp_rand!!!*/ |
| |
| #ifdef MPI |
| void time_mult(void) |
| { |
| ulong64 t1, t2; |
| unsigned long x, y; |
| void *a, *b, *c; |
| |
| fprintf(stderr, "Timing Multiplying:\n"); |
| mp_init_multi(&a,&b,&c,NULL); |
| for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) { |
| mp_rand(&a, x); |
| mp_rand(&b, x); |
| |
| #define DO1 mp_mul(&a, &b, &c); |
| #define DO2 DO1; DO1; |
| |
| t2 = -1; |
| for (y = 0; y < TIMES; y++) { |
| t_start(); |
| t1 = t_read(); |
| DO2; |
| t1 = (t_read() - t1)>>1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2); |
| } |
| mp_clear_multi(&a,&b,&c,NULL); |
| |
| #undef DO1 |
| #undef DO2 |
| } |
| |
| void time_sqr(void) |
| { |
| ulong64 t1, t2; |
| unsigned long x, y; |
| mp_int a, b; |
| |
| fprintf(stderr, "Timing Squaring:\n"); |
| mp_init_multi(&a,&b,NULL); |
| for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) { |
| mp_rand(&a, x); |
| |
| #define DO1 mp_sqr(&a, &b); |
| #define DO2 DO1; DO1; |
| |
| t2 = -1; |
| for (y = 0; y < TIMES; y++) { |
| t_start(); |
| t1 = t_read(); |
| DO2; |
| t1 = (t_read() - t1)>>1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2); |
| } |
| mp_clear_multi(&a,&b,NULL); |
| |
| #undef DO1 |
| #undef DO2 |
| } |
| #else |
| void time_mult(void) { fprintf(stderr, "NO MULT\n"); } |
| void time_sqr(void) { fprintf(stderr, "NO SQR\n"); } |
| #endif |
| |
| void time_prng(void) |
| { |
| ulong64 t1, t2; |
| unsigned char buf[4096]; |
| prng_state tprng; |
| unsigned long x, y; |
| int err; |
| |
| fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n"); |
| for (x = 0; prng_descriptor[x].name != NULL; x++) { |
| |
| /* sanity check on prng */ |
| if ((err = prng_descriptor[x].test()) != CRYPT_OK) { |
| fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| prng_descriptor[x].start(&tprng); |
| zeromem(buf, 256); |
| prng_descriptor[x].add_entropy(buf, 256, &tprng); |
| prng_descriptor[x].ready(&tprng); |
| t2 = -1; |
| |
| #define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); } |
| #define DO2 DO1 DO1 |
| for (y = 0; y < 10000; y++) { |
| t_start(); |
| t1 = t_read(); |
| DO2; |
| t1 = (t_read() - t1)>>1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "%20s: %5llu ", prng_descriptor[x].name, t2>>12); |
| #undef DO2 |
| #undef DO1 |
| |
| #define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng); |
| #define DO2 DO1 DO1 |
| for (y = 0; y < 10000; y++) { |
| t_start(); |
| t1 = t_read(); |
| DO2; |
| t1 = (t_read() - t1)>>1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "%5llu\n", t2); |
| #undef DO2 |
| #undef DO1 |
| |
| } |
| } |
| |
| #ifdef MDSA |
| /* time various DSA operations */ |
| void time_dsa(void) |
| { |
| dsa_key key; |
| ulong64 t1, t2; |
| unsigned long x, y; |
| int err; |
| static const struct { |
| int group, modulus; |
| } groups[] = { |
| { 20, 96 }, |
| { 20, 128 }, |
| { 24, 192 }, |
| { 28, 256 }, |
| { 32, 512 } |
| }; |
| |
| for (x = 0; x < (sizeof(groups)/sizeof(groups[0])); x++) { |
| t2 = 0; |
| for (y = 0; y < 4; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = dsa_make_key(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| |
| #ifdef LTC_PROFILE |
| t2 <<= 2; |
| break; |
| #endif |
| if (y < 3) { |
| dsa_free(&key); |
| } |
| } |
| t2 >>= 2; |
| fprintf(stderr, "DSA-(%lu, %lu) make_key took %15llu cycles\n", (unsigned long)groups[x].group*8, (unsigned long)groups[x].modulus*8, t2); |
| } |
| } |
| #endif |
| |
| |
| #ifdef MRSA |
| /* time various RSA operations */ |
| void time_rsa(void) |
| { |
| rsa_key key; |
| ulong64 t1, t2; |
| unsigned char buf[2][2048]; |
| unsigned long x, y, z, zzz; |
| int err, zz, stat; |
| |
| for (x = 1024; x <= 2048; x += 256) { |
| t2 = 0; |
| for (y = 0; y < 4; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = rsa_make_key(&yarrow_prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| |
| #ifdef LTC_PROFILE |
| t2 <<= 2; |
| break; |
| #endif |
| |
| if (y < 3) { |
| rsa_free(&key); |
| } |
| } |
| t2 >>= 2; |
| fprintf(stderr, "RSA-%lu make_key took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 16; y++) { |
| t_start(); |
| t1 = t_read(); |
| z = sizeof(buf[1]); |
| if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char *)"testprog", 8, &yarrow_prng, |
| find_prng("yarrow"), find_hash("sha1"), |
| &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 4; |
| break; |
| #endif |
| } |
| t2 >>= 4; |
| fprintf(stderr, "RSA-%lu encrypt_key took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 2048; y++) { |
| t_start(); |
| t1 = t_read(); |
| zzz = sizeof(buf[0]); |
| if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char *)"testprog", 8, find_hash("sha1"), |
| &zz, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 11; |
| break; |
| #endif |
| } |
| t2 >>= 11; |
| fprintf(stderr, "RSA-%lu decrypt_key took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| z = sizeof(buf[1]); |
| if ((err = rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, |
| find_prng("yarrow"), find_hash("sha1"), 8, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nrsa_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| } |
| t2 >>= 8; |
| fprintf(stderr, "RSA-%lu sign_hash took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 2048; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nrsa_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| if (stat == 0) { |
| fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 11; |
| break; |
| #endif |
| } |
| t2 >>= 11; |
| fprintf(stderr, "RSA-%lu verify_hash took %15llu cycles\n", x, t2); |
| fprintf(stderr, "\n\n"); |
| rsa_free(&key); |
| } |
| } |
| #else |
| void time_rsa(void) { fprintf(stderr, "NO RSA\n"); } |
| #endif |
| |
| #ifdef MKAT |
| /* time various KAT operations */ |
| void time_katja(void) |
| { |
| katja_key key; |
| ulong64 t1, t2; |
| unsigned char buf[2][4096]; |
| unsigned long x, y, z, zzz; |
| int err, zz; |
| |
| for (x = 1024; x <= 2048; x += 256) { |
| t2 = 0; |
| for (y = 0; y < 4; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = katja_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nkatja_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| |
| if (y < 3) { |
| katja_free(&key); |
| } |
| } |
| t2 >>= 2; |
| fprintf(stderr, "Katja-%lu make_key took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 16; y++) { |
| t_start(); |
| t1 = t_read(); |
| z = sizeof(buf[1]); |
| if ((err = katja_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &yarrow_prng, |
| find_prng("yarrow"), find_hash("sha1"), |
| &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nkatja_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| } |
| t2 >>= 4; |
| fprintf(stderr, "Katja-%lu encrypt_key took %15llu cycles\n", x, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 2048; y++) { |
| t_start(); |
| t1 = t_read(); |
| zzz = sizeof(buf[0]); |
| if ((err = katja_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8, find_hash("sha1"), |
| &zz, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nkatja_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| } |
| t2 >>= 11; |
| fprintf(stderr, "Katja-%lu decrypt_key took %15llu cycles\n", x, t2); |
| |
| |
| katja_free(&key); |
| } |
| } |
| #else |
| void time_katja(void) { fprintf(stderr, "NO Katja\n"); } |
| #endif |
| |
| #ifdef MECC |
| /* time various ECC operations */ |
| void time_ecc(void) |
| { |
| ecc_key key; |
| ulong64 t1, t2; |
| unsigned char buf[2][256]; |
| unsigned long i, w, x, y, z; |
| int err, stat; |
| static unsigned long sizes[] = { |
| #ifdef ECC112 |
| 112/8, |
| #endif |
| #ifdef ECC128 |
| 128/8, |
| #endif |
| #ifdef ECC160 |
| 160/8, |
| #endif |
| #ifdef ECC192 |
| 192/8, |
| #endif |
| #ifdef ECC224 |
| 224/8, |
| #endif |
| #ifdef ECC256 |
| 256/8, |
| #endif |
| #ifdef ECC384 |
| 384/8, |
| #endif |
| #ifdef ECC521 |
| 521/8, |
| #endif |
| 100000}; |
| |
| for (x = sizes[i=0]; x < 100000; x = sizes[++i]) { |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = ecc_make_key(&yarrow_prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| |
| if (y < 255) { |
| ecc_free(&key); |
| } |
| } |
| t2 >>= 8; |
| fprintf(stderr, "ECC-%lu make_key took %15llu cycles\n", x*8, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| z = sizeof(buf[1]); |
| if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"), |
| &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| } |
| t2 >>= 8; |
| fprintf(stderr, "ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| w = 20; |
| if ((err = ecc_decrypt_key(buf[1], z, buf[0], &w, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\necc_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| } |
| t2 >>= 8; |
| fprintf(stderr, "ECC-%lu decrypt_key took %15llu cycles\n", x*8, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| z = sizeof(buf[1]); |
| if ((err = ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng, |
| find_prng("yarrow"), &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\necc_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| } |
| t2 >>= 8; |
| fprintf(stderr, "ECC-%lu sign_hash took %15llu cycles\n", x*8, t2); |
| |
| t2 = 0; |
| for (y = 0; y < 256; y++) { |
| t_start(); |
| t1 = t_read(); |
| if ((err = ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)) != CRYPT_OK) { |
| fprintf(stderr, "\n\necc_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK)); |
| exit(EXIT_FAILURE); |
| } |
| if (stat == 0) { |
| fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x*8, y); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| t2 += t1; |
| #ifdef LTC_PROFILE |
| t2 <<= 8; |
| break; |
| #endif |
| } |
| t2 >>= 8; |
| fprintf(stderr, "ECC-%lu verify_hash took %15llu cycles\n", x*8, t2); |
| |
| fprintf(stderr, "\n\n"); |
| ecc_free(&key); |
| } |
| } |
| #else |
| void time_ecc(void) { fprintf(stderr, "NO ECC\n"); } |
| #endif |
| |
| void time_macs_(unsigned long MAC_SIZE) |
| { |
| unsigned char *buf, key[16], tag[16]; |
| ulong64 t1, t2; |
| unsigned long x, z; |
| int err, cipher_idx, hash_idx; |
| |
| fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE); |
| |
| buf = XMALLOC(MAC_SIZE*1024); |
| if (buf == NULL) { |
| fprintf(stderr, "\n\nout of heap yo\n\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| cipher_idx = find_cipher("aes"); |
| hash_idx = find_hash("sha1"); |
| |
| if (cipher_idx == -1 || hash_idx == -1) { |
| fprintf(stderr, "Warning the MAC tests requires AES and SHA1 to operate... so sorry\n"); |
| return; |
| } |
| |
| yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); |
| yarrow_read(key, 16, &yarrow_prng); |
| |
| #ifdef LTC_OMAC |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "OMAC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef LTC_XCBC |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nxcbc error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "XCBC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef LTC_F9_MODE |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nF9 error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "F9-%s\t\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef LTC_PMAC |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "PMAC-AES\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef PELICAN |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) { |
| fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "PELICAN \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef LTC_HMAC |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "HMAC-%s\t\t%9llu\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| XFREE(buf); |
| } |
| |
| void time_macs(void) |
| { |
| time_macs_(1); |
| time_macs_(4); |
| time_macs_(32); |
| } |
| |
| void time_encmacs_(unsigned long MAC_SIZE) |
| { |
| unsigned char *buf, IV[16], key[16], tag[16]; |
| ulong64 t1, t2; |
| unsigned long x, z; |
| int err, cipher_idx; |
| symmetric_key skey; |
| |
| fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE); |
| |
| buf = XMALLOC(MAC_SIZE*1024); |
| if (buf == NULL) { |
| fprintf(stderr, "\n\nout of heap yo\n\n"); |
| exit(EXIT_FAILURE); |
| } |
| |
| cipher_idx = find_cipher("aes"); |
| |
| yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng); |
| yarrow_read(key, 16, &yarrow_prng); |
| yarrow_read(IV, 16, &yarrow_prng); |
| |
| #ifdef EAX_MODE |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\nEAX error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "EAX \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef OCB_MODE |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\nOCB error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "OCB \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| #endif |
| |
| #ifdef CCM_MODE |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { |
| fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "CCM (no-precomp) \t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| |
| cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey); |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) { |
| fprintf(stderr, "\nCCM error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "CCM (precomp) \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| cipher_descriptor[cipher_idx].done(&skey); |
| #endif |
| |
| #ifdef GCM_MODE |
| t2 = -1; |
| for (x = 0; x < 100; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error... %s\n", error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "GCM (no-precomp)\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| |
| { |
| gcm_state gcm |
| #ifdef GCM_TABLES_SSE2 |
| __attribute__ ((aligned (16))) |
| #endif |
| ; |
| |
| if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); } |
| t2 = -1; |
| for (x = 0; x < 10000; x++) { |
| t_start(); |
| t1 = t_read(); |
| z = 16; |
| if ((err = gcm_reset(&gcm)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| |
| if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) { |
| fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err)); |
| exit(EXIT_FAILURE); |
| } |
| t1 = t_read() - t1; |
| if (t1 < t2) t2 = t1; |
| } |
| fprintf(stderr, "GCM (precomp)\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024)); |
| } |
| |
| #endif |
| |
| } |
| |
| void time_encmacs(void) |
| { |
| time_encmacs_(1); |
| time_encmacs_(4); |
| time_encmacs_(32); |
| } |
| |
| /* $Source: /cvs/libtom/libtomcrypt/testprof/x86_prof.c,v $ */ |
| /* $Revision: 1.51 $ */ |
| /* $Date: 2006/11/21 00:10:18 $ */ |