| #include <tommath.h> |
| #ifdef BN_FAST_MP_INVMOD_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| /* computes the modular inverse via binary extended euclidean algorithm, |
| * that is c = 1/a mod b |
| * |
| * Based on slow invmod except this is optimized for the case where b is |
| * odd as per HAC Note 14.64 on pp. 610 |
| */ |
| int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| { |
| mp_int x, y, u, v, B, D; |
| int res, neg; |
| |
| /* 2. [modified] b must be odd */ |
| if (mp_iseven (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* init all our temps */ |
| if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) { |
| return res; |
| } |
| |
| /* x == modulus, y == value to invert */ |
| if ((res = mp_copy (b, &x)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| /* we need y = |a| */ |
| if ((res = mp_mod (a, b, &y)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| mp_set (&D, 1); |
| |
| top: |
| /* 4. while u is even do */ |
| while (mp_iseven (&u) == 1) { |
| /* 4.1 u = u/2 */ |
| if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 4.2 if B is odd then */ |
| if (mp_isodd (&B) == 1) { |
| if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* B = B/2 */ |
| if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 5. while v is even do */ |
| while (mp_iseven (&v) == 1) { |
| /* 5.1 v = v/2 */ |
| if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| /* 5.2 if D is odd then */ |
| if (mp_isodd (&D) == 1) { |
| /* D = (D-x)/2 */ |
| if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| /* D = D/2 */ |
| if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* 6. if u >= v then */ |
| if (mp_cmp (&u, &v) != MP_LT) { |
| /* u = u - v, B = B - D */ |
| if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } else { |
| /* v - v - u, D = D - B */ |
| if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| |
| if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* if not zero goto step 4 */ |
| if (mp_iszero (&u) == 0) { |
| goto top; |
| } |
| |
| /* now a = C, b = D, gcd == g*v */ |
| |
| /* if v != 1 then there is no inverse */ |
| if (mp_cmp_d (&v, 1) != MP_EQ) { |
| res = MP_VAL; |
| goto LBL_ERR; |
| } |
| |
| /* b is now the inverse */ |
| neg = a->sign; |
| while (D.sign == MP_NEG) { |
| if ((res = mp_add (&D, b, &D)) != MP_OKAY) { |
| goto LBL_ERR; |
| } |
| } |
| mp_exch (&D, c); |
| c->sign = neg; |
| res = MP_OKAY; |
| |
| LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL); |
| return res; |
| } |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_fast_mp_invmod.c,v $ */ |
| /* $Revision: 1.3 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |