| #include <tommath.h> |
| #ifdef BN_MP_DIV_C |
| /* LibTomMath, multiple-precision integer library -- Tom St Denis |
| * |
| * LibTomMath is a library that provides multiple-precision |
| * integer arithmetic as well as number theoretic functionality. |
| * |
| * The library was designed directly after the MPI library by |
| * Michael Fromberger but has been written from scratch with |
| * additional optimizations in place. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com |
| */ |
| |
| #ifdef BN_MP_DIV_SMALL |
| |
| /* slower bit-bang division... also smaller */ |
| int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| mp_int ta, tb, tq, q; |
| int res, n, n2; |
| |
| /* is divisor zero ? */ |
| if (mp_iszero (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* if a < b then q=0, r = a */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| if (d != NULL) { |
| res = mp_copy (a, d); |
| } else { |
| res = MP_OKAY; |
| } |
| if (c != NULL) { |
| mp_zero (c); |
| } |
| return res; |
| } |
| |
| /* init our temps */ |
| if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { |
| return res; |
| } |
| |
| |
| mp_set(&tq, 1); |
| n = mp_count_bits(a) - mp_count_bits(b); |
| if (((res = mp_abs(a, &ta)) != MP_OKAY) || |
| ((res = mp_abs(b, &tb)) != MP_OKAY) || |
| ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || |
| ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| |
| while (n-- >= 0) { |
| if (mp_cmp(&tb, &ta) != MP_GT) { |
| if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || |
| ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| } |
| if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || |
| ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { |
| goto LBL_ERR; |
| } |
| } |
| |
| /* now q == quotient and ta == remainder */ |
| n = a->sign; |
| n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); |
| if (c != NULL) { |
| mp_exch(c, &q); |
| c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; |
| } |
| if (d != NULL) { |
| mp_exch(d, &ta); |
| d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; |
| } |
| LBL_ERR: |
| mp_clear_multi(&ta, &tb, &tq, &q, NULL); |
| return res; |
| } |
| |
| #else |
| |
| /* integer signed division. |
| * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
| * HAC pp.598 Algorithm 14.20 |
| * |
| * Note that the description in HAC is horribly |
| * incomplete. For example, it doesn't consider |
| * the case where digits are removed from 'x' in |
| * the inner loop. It also doesn't consider the |
| * case that y has fewer than three digits, etc.. |
| * |
| * The overall algorithm is as described as |
| * 14.20 from HAC but fixed to treat these cases. |
| */ |
| int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| { |
| mp_int q, x, y, t1, t2; |
| int res, n, t, i, norm, neg; |
| |
| /* is divisor zero ? */ |
| if (mp_iszero (b) == 1) { |
| return MP_VAL; |
| } |
| |
| /* if a < b then q=0, r = a */ |
| if (mp_cmp_mag (a, b) == MP_LT) { |
| if (d != NULL) { |
| res = mp_copy (a, d); |
| } else { |
| res = MP_OKAY; |
| } |
| if (c != NULL) { |
| mp_zero (c); |
| } |
| return res; |
| } |
| |
| if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
| return res; |
| } |
| q.used = a->used + 2; |
| |
| if ((res = mp_init (&t1)) != MP_OKAY) { |
| goto LBL_Q; |
| } |
| |
| if ((res = mp_init (&t2)) != MP_OKAY) { |
| goto LBL_T1; |
| } |
| |
| if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
| goto LBL_T2; |
| } |
| |
| if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
| goto LBL_X; |
| } |
| |
| /* fix the sign */ |
| neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| x.sign = y.sign = MP_ZPOS; |
| |
| /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
| norm = mp_count_bits(&y) % DIGIT_BIT; |
| if (norm < (int)(DIGIT_BIT-1)) { |
| norm = (DIGIT_BIT-1) - norm; |
| if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| } else { |
| norm = 0; |
| } |
| |
| /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
| n = x.used - 1; |
| t = y.used - 1; |
| |
| /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
| if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
| goto LBL_Y; |
| } |
| |
| while (mp_cmp (&x, &y) != MP_LT) { |
| ++(q.dp[n - t]); |
| if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| } |
| |
| /* reset y by shifting it back down */ |
| mp_rshd (&y, n - t); |
| |
| /* step 3. for i from n down to (t + 1) */ |
| for (i = n; i >= (t + 1); i--) { |
| if (i > x.used) { |
| continue; |
| } |
| |
| /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
| * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
| if (x.dp[i] == y.dp[t]) { |
| q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
| } else { |
| mp_word tmp; |
| tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
| tmp |= ((mp_word) x.dp[i - 1]); |
| tmp /= ((mp_word) y.dp[t]); |
| if (tmp > (mp_word) MP_MASK) |
| tmp = MP_MASK; |
| q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
| } |
| |
| /* while (q{i-t-1} * (yt * b + y{t-1})) > |
| xi * b**2 + xi-1 * b + xi-2 |
| |
| do q{i-t-1} -= 1; |
| */ |
| q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
| do { |
| q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
| |
| /* find left hand */ |
| mp_zero (&t1); |
| t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
| t1.dp[1] = y.dp[t]; |
| t1.used = 2; |
| if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| |
| /* find right hand */ |
| t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
| t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
| t2.dp[2] = x.dp[i]; |
| t2.used = 3; |
| } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
| |
| /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
| if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| |
| if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| |
| if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| |
| /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
| if (x.sign == MP_NEG) { |
| if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| |
| q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
| } |
| } |
| |
| /* now q is the quotient and x is the remainder |
| * [which we have to normalize] |
| */ |
| |
| /* get sign before writing to c */ |
| x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
| |
| if (c != NULL) { |
| mp_clamp (&q); |
| mp_exch (&q, c); |
| c->sign = neg; |
| } |
| |
| if (d != NULL) { |
| if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) { |
| goto LBL_Y; |
| } |
| mp_exch (&x, d); |
| } |
| |
| res = MP_OKAY; |
| |
| LBL_Y:mp_clear (&y); |
| LBL_X:mp_clear (&x); |
| LBL_T2:mp_clear (&t2); |
| LBL_T1:mp_clear (&t1); |
| LBL_Q:mp_clear (&q); |
| return res; |
| } |
| |
| #endif |
| |
| #endif |
| |
| /* $Source: /cvs/libtom/libtommath/bn_mp_div.c,v $ */ |
| /* $Revision: 1.3 $ */ |
| /* $Date: 2006/03/31 14:18:44 $ */ |