blob: de62cdacdd08b47d6b94bad1ddcb5942da7e1617 [file] [log] [blame]
/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com
*/
/**********************************************************************\
* To commemorate the 1996 RSA Data Security Conference, the following *
* code is released into the public domain by its author. Prost! *
* *
* This cipher uses 16-bit words and little-endian byte ordering. *
* I wonder which processor it was optimized for? *
* *
* Thanks to CodeView, SoftIce, and D86 for helping bring this code to *
* the public. *
\**********************************************************************/
#include <tomcrypt.h>
/**
@file rc2.c
Implementation of RC2
*/
#ifdef RC2
const struct ltc_cipher_descriptor rc2_desc = {
"rc2",
12, 8, 128, 8, 16,
&rc2_setup,
&rc2_ecb_encrypt,
&rc2_ecb_decrypt,
&rc2_test,
&rc2_done,
&rc2_keysize,
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
};
/* 256-entry permutation table, probably derived somehow from pi */
static const unsigned char permute[256] = {
217,120,249,196, 25,221,181,237, 40,233,253,121, 74,160,216,157,
198,126, 55,131, 43,118, 83,142, 98, 76,100,136, 68,139,251,162,
23,154, 89,245,135,179, 79, 19, 97, 69,109,141, 9,129,125, 50,
189,143, 64,235,134,183,123, 11,240,149, 33, 34, 92,107, 78,130,
84,214,101,147,206, 96,178, 28,115, 86,192, 20,167,140,241,220,
18,117,202, 31, 59,190,228,209, 66, 61,212, 48,163, 60,182, 38,
111,191, 14,218, 70,105, 7, 87, 39,242, 29,155,188,148, 67, 3,
248, 17,199,246,144,239, 62,231, 6,195,213, 47,200,102, 30,215,
8,232,234,222,128, 82,238,247,132,170,114,172, 53, 77,106, 42,
150, 26,210,113, 90, 21, 73,116, 75,159,208, 94, 4, 24,164,236,
194,224, 65,110, 15, 81,203,204, 36,145,175, 80,161,244,112, 57,
153,124, 58,133, 35,184,180,122,252, 2, 54, 91, 37, 85,151, 49,
45, 93,250,152,227,138,146,174, 5,223, 41, 16,103,108,186,201,
211, 0,230,207,225,158,168, 44, 99, 22, 1, 63, 88,226,137,169,
13, 56, 52, 27,171, 51,255,176,187, 72, 12, 95,185,177,205, 46,
197,243,219, 71,229,165,156,119, 10,166, 32,104,254,127,193,173
};
/**
Initialize the RC2 block cipher
@param key The symmetric key you wish to pass
@param keylen The key length in bytes
@param num_rounds The number of rounds desired (0 for default)
@param skey The key in as scheduled by this function.
@return CRYPT_OK if successful
*/
int rc2_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
{
unsigned *xkey = skey->rc2.xkey;
unsigned char tmp[128];
unsigned T8, TM;
int i, bits;
LTC_ARGCHK(key != NULL);
LTC_ARGCHK(skey != NULL);
if (keylen < 8 || keylen > 128) {
return CRYPT_INVALID_KEYSIZE;
}
if (num_rounds != 0 && num_rounds != 16) {
return CRYPT_INVALID_ROUNDS;
}
for (i = 0; i < keylen; i++) {
tmp[i] = key[i] & 255;
}
/* Phase 1: Expand input key to 128 bytes */
if (keylen < 128) {
for (i = keylen; i < 128; i++) {
tmp[i] = permute[(tmp[i - 1] + tmp[i - keylen]) & 255];
}
}
/* Phase 2 - reduce effective key size to "bits" */
bits = keylen<<3;
T8 = (unsigned)(bits+7)>>3;
TM = (255 >> (unsigned)(7 & -bits));
tmp[128 - T8] = permute[tmp[128 - T8] & TM];
for (i = 127 - T8; i >= 0; i--) {
tmp[i] = permute[tmp[i + 1] ^ tmp[i + T8]];
}
/* Phase 3 - copy to xkey in little-endian order */
for (i = 0; i < 64; i++) {
xkey[i] = (unsigned)tmp[2*i] + ((unsigned)tmp[2*i+1] << 8);
}
#ifdef LTC_CLEAN_STACK
zeromem(tmp, sizeof(tmp));
#endif
return CRYPT_OK;
}
/**********************************************************************\
* Encrypt an 8-byte block of plaintext using the given key. *
\**********************************************************************/
/**
Encrypts a block of text with RC2
@param pt The input plaintext (8 bytes)
@param ct The output ciphertext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
symmetric_key *skey)
#else
int rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
symmetric_key *skey)
#endif
{
unsigned *xkey;
unsigned x76, x54, x32, x10, i;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
xkey = skey->rc2.xkey;
x76 = ((unsigned)pt[7] << 8) + (unsigned)pt[6];
x54 = ((unsigned)pt[5] << 8) + (unsigned)pt[4];
x32 = ((unsigned)pt[3] << 8) + (unsigned)pt[2];
x10 = ((unsigned)pt[1] << 8) + (unsigned)pt[0];
for (i = 0; i < 16; i++) {
x10 = (x10 + (x32 & ~x76) + (x54 & x76) + xkey[4*i+0]) & 0xFFFF;
x10 = ((x10 << 1) | (x10 >> 15));
x32 = (x32 + (x54 & ~x10) + (x76 & x10) + xkey[4*i+1]) & 0xFFFF;
x32 = ((x32 << 2) | (x32 >> 14));
x54 = (x54 + (x76 & ~x32) + (x10 & x32) + xkey[4*i+2]) & 0xFFFF;
x54 = ((x54 << 3) | (x54 >> 13));
x76 = (x76 + (x10 & ~x54) + (x32 & x54) + xkey[4*i+3]) & 0xFFFF;
x76 = ((x76 << 5) | (x76 >> 11));
if (i == 4 || i == 10) {
x10 = (x10 + xkey[x76 & 63]) & 0xFFFF;
x32 = (x32 + xkey[x10 & 63]) & 0xFFFF;
x54 = (x54 + xkey[x32 & 63]) & 0xFFFF;
x76 = (x76 + xkey[x54 & 63]) & 0xFFFF;
}
}
ct[0] = (unsigned char)x10;
ct[1] = (unsigned char)(x10 >> 8);
ct[2] = (unsigned char)x32;
ct[3] = (unsigned char)(x32 >> 8);
ct[4] = (unsigned char)x54;
ct[5] = (unsigned char)(x54 >> 8);
ct[6] = (unsigned char)x76;
ct[7] = (unsigned char)(x76 >> 8);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc2_ecb_encrypt( const unsigned char *pt,
unsigned char *ct,
symmetric_key *skey)
{
int err = _rc2_ecb_encrypt(pt, ct, skey);
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 5);
return err;
}
#endif
/**********************************************************************\
* Decrypt an 8-byte block of ciphertext using the given key. *
\**********************************************************************/
/**
Decrypts a block of text with RC2
@param ct The input ciphertext (8 bytes)
@param pt The output plaintext (8 bytes)
@param skey The key as scheduled
@return CRYPT_OK if successful
*/
#ifdef LTC_CLEAN_STACK
static int _rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
symmetric_key *skey)
#else
int rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
symmetric_key *skey)
#endif
{
unsigned x76, x54, x32, x10;
unsigned *xkey;
int i;
LTC_ARGCHK(pt != NULL);
LTC_ARGCHK(ct != NULL);
LTC_ARGCHK(skey != NULL);
xkey = skey->rc2.xkey;
x76 = ((unsigned)ct[7] << 8) + (unsigned)ct[6];
x54 = ((unsigned)ct[5] << 8) + (unsigned)ct[4];
x32 = ((unsigned)ct[3] << 8) + (unsigned)ct[2];
x10 = ((unsigned)ct[1] << 8) + (unsigned)ct[0];
for (i = 15; i >= 0; i--) {
if (i == 4 || i == 10) {
x76 = (x76 - xkey[x54 & 63]) & 0xFFFF;
x54 = (x54 - xkey[x32 & 63]) & 0xFFFF;
x32 = (x32 - xkey[x10 & 63]) & 0xFFFF;
x10 = (x10 - xkey[x76 & 63]) & 0xFFFF;
}
x76 = ((x76 << 11) | (x76 >> 5));
x76 = (x76 - ((x10 & ~x54) + (x32 & x54) + xkey[4*i+3])) & 0xFFFF;
x54 = ((x54 << 13) | (x54 >> 3));
x54 = (x54 - ((x76 & ~x32) + (x10 & x32) + xkey[4*i+2])) & 0xFFFF;
x32 = ((x32 << 14) | (x32 >> 2));
x32 = (x32 - ((x54 & ~x10) + (x76 & x10) + xkey[4*i+1])) & 0xFFFF;
x10 = ((x10 << 15) | (x10 >> 1));
x10 = (x10 - ((x32 & ~x76) + (x54 & x76) + xkey[4*i+0])) & 0xFFFF;
}
pt[0] = (unsigned char)x10;
pt[1] = (unsigned char)(x10 >> 8);
pt[2] = (unsigned char)x32;
pt[3] = (unsigned char)(x32 >> 8);
pt[4] = (unsigned char)x54;
pt[5] = (unsigned char)(x54 >> 8);
pt[6] = (unsigned char)x76;
pt[7] = (unsigned char)(x76 >> 8);
return CRYPT_OK;
}
#ifdef LTC_CLEAN_STACK
int rc2_ecb_decrypt( const unsigned char *ct,
unsigned char *pt,
symmetric_key *skey)
{
int err = _rc2_ecb_decrypt(ct, pt, skey);
burn_stack(sizeof(unsigned *) + sizeof(unsigned) * 4 + sizeof(int));
return err;
}
#endif
/**
Performs a self-test of the RC2 block cipher
@return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
*/
int rc2_test(void)
{
#ifndef LTC_TEST
return CRYPT_NOP;
#else
static const struct {
int keylen;
unsigned char key[16], pt[8], ct[8];
} tests[] = {
{ 8,
{ 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
{ 0x30, 0x64, 0x9e, 0xdf, 0x9b, 0xe7, 0xd2, 0xc2 }
},
{ 16,
{ 0x88, 0xbc, 0xa9, 0x0e, 0x90, 0x87, 0x5a, 0x7f,
0x0f, 0x79, 0xc3, 0x84, 0x62, 0x7b, 0xaf, 0xb2 },
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
{ 0x22, 0x69, 0x55, 0x2a, 0xb0, 0xf8, 0x5c, 0xa6 }
}
};
int x, y, err;
symmetric_key skey;
unsigned char tmp[2][8];
for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) {
zeromem(tmp, sizeof(tmp));
if ((err = rc2_setup(tests[x].key, tests[x].keylen, 0, &skey)) != CRYPT_OK) {
return err;
}
rc2_ecb_encrypt(tests[x].pt, tmp[0], &skey);
rc2_ecb_decrypt(tmp[0], tmp[1], &skey);
if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) {
return CRYPT_FAIL_TESTVECTOR;
}
/* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
for (y = 0; y < 8; y++) tmp[0][y] = 0;
for (y = 0; y < 1000; y++) rc2_ecb_encrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 1000; y++) rc2_ecb_decrypt(tmp[0], tmp[0], &skey);
for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
}
return CRYPT_OK;
#endif
}
/** Terminate the context
@param skey The scheduled key
*/
void rc2_done(symmetric_key *skey)
{
}
/**
Gets suitable key size
@param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
@return CRYPT_OK if the input key size is acceptable.
*/
int rc2_keysize(int *keysize)
{
LTC_ARGCHK(keysize != NULL);
if (*keysize < 8) {
return CRYPT_INVALID_KEYSIZE;
} else if (*keysize > 128) {
*keysize = 128;
}
return CRYPT_OK;
}
#endif
/* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc2.c,v $ */
/* $Revision: 1.12 $ */
/* $Date: 2006/11/08 23:01:06 $ */