| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com |
| */ |
| |
| /** |
| @file xtea.c |
| Implementation of XTEA, Tom St Denis |
| */ |
| #include "tomcrypt.h" |
| |
| #ifdef XTEA |
| |
| const struct ltc_cipher_descriptor xtea_desc = |
| { |
| "xtea", |
| 1, |
| 16, 16, 8, 32, |
| &xtea_setup, |
| &xtea_ecb_encrypt, |
| &xtea_ecb_decrypt, |
| &xtea_test, |
| &xtea_done, |
| &xtea_keysize, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL |
| }; |
| |
| int xtea_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| { |
| unsigned long x, sum, K[4]; |
| |
| LTC_ARGCHK(key != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| /* check arguments */ |
| if (keylen != 16) { |
| return CRYPT_INVALID_KEYSIZE; |
| } |
| |
| if (num_rounds != 0 && num_rounds != 32) { |
| return CRYPT_INVALID_ROUNDS; |
| } |
| |
| /* load key */ |
| LOAD32L(K[0], key+0); |
| LOAD32L(K[1], key+4); |
| LOAD32L(K[2], key+8); |
| LOAD32L(K[3], key+12); |
| |
| for (x = sum = 0; x < 32; x++) { |
| skey->xtea.A[x] = (sum + K[sum&3]) & 0xFFFFFFFFUL; |
| sum = (sum + 0x9E3779B9UL) & 0xFFFFFFFFUL; |
| skey->xtea.B[x] = (sum + K[(sum>>11)&3]) & 0xFFFFFFFFUL; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| zeromem(&K, sizeof(K)); |
| #endif |
| |
| return CRYPT_OK; |
| } |
| |
| /** |
| Encrypts a block of text with XTEA |
| @param pt The input plaintext (8 bytes) |
| @param ct The output ciphertext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| int xtea_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| { |
| unsigned long y, z; |
| int r; |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| LOAD32L(y, &pt[0]); |
| LOAD32L(z, &pt[4]); |
| for (r = 0; r < 32; r += 4) { |
| y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL; |
| z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL; |
| |
| y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+1])) & 0xFFFFFFFFUL; |
| z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+1])) & 0xFFFFFFFFUL; |
| |
| y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+2])) & 0xFFFFFFFFUL; |
| z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+2])) & 0xFFFFFFFFUL; |
| |
| y = (y + ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r+3])) & 0xFFFFFFFFUL; |
| z = (z + ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r+3])) & 0xFFFFFFFFUL; |
| } |
| STORE32L(y, &ct[0]); |
| STORE32L(z, &ct[4]); |
| return CRYPT_OK; |
| } |
| |
| /** |
| Decrypts a block of text with XTEA |
| @param ct The input ciphertext (8 bytes) |
| @param pt The output plaintext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| int xtea_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| { |
| unsigned long y, z; |
| int r; |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| LOAD32L(y, &ct[0]); |
| LOAD32L(z, &ct[4]); |
| for (r = 31; r >= 0; r -= 4) { |
| z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r])) & 0xFFFFFFFFUL; |
| y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r])) & 0xFFFFFFFFUL; |
| |
| z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-1])) & 0xFFFFFFFFUL; |
| y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-1])) & 0xFFFFFFFFUL; |
| |
| z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-2])) & 0xFFFFFFFFUL; |
| y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-2])) & 0xFFFFFFFFUL; |
| |
| z = (z - ((((y<<4)^(y>>5)) + y) ^ skey->xtea.B[r-3])) & 0xFFFFFFFFUL; |
| y = (y - ((((z<<4)^(z>>5)) + z) ^ skey->xtea.A[r-3])) & 0xFFFFFFFFUL; |
| } |
| STORE32L(y, &pt[0]); |
| STORE32L(z, &pt[4]); |
| return CRYPT_OK; |
| } |
| |
| /** |
| Performs a self-test of the XTEA block cipher |
| @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled |
| */ |
| int xtea_test(void) |
| { |
| #ifndef LTC_TEST |
| return CRYPT_NOP; |
| #else |
| static const unsigned char key[16] = |
| { 0x78, 0x56, 0x34, 0x12, 0xf0, 0xcd, 0xcb, 0x9a, |
| 0x48, 0x37, 0x26, 0x15, 0xc0, 0xbf, 0xae, 0x9d }; |
| static const unsigned char pt[8] = |
| { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08 }; |
| static const unsigned char ct[8] = |
| { 0x75, 0xd7, 0xc5, 0xbf, 0xcf, 0x58, 0xc9, 0x3f }; |
| unsigned char tmp[2][8]; |
| symmetric_key skey; |
| int err, y; |
| |
| if ((err = xtea_setup(key, 16, 0, &skey)) != CRYPT_OK) { |
| return err; |
| } |
| xtea_ecb_encrypt(pt, tmp[0], &skey); |
| xtea_ecb_decrypt(tmp[0], tmp[1], &skey); |
| |
| if (XMEMCMP(tmp[0], ct, 8) != 0 || XMEMCMP(tmp[1], pt, 8) != 0) { |
| return CRYPT_FAIL_TESTVECTOR; |
| } |
| |
| /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
| for (y = 0; y < 8; y++) tmp[0][y] = 0; |
| for (y = 0; y < 1000; y++) xtea_ecb_encrypt(tmp[0], tmp[0], &skey); |
| for (y = 0; y < 1000; y++) xtea_ecb_decrypt(tmp[0], tmp[0], &skey); |
| for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
| |
| return CRYPT_OK; |
| #endif |
| } |
| |
| /** Terminate the context |
| @param skey The scheduled key |
| */ |
| void xtea_done(symmetric_key *skey) |
| { |
| } |
| |
| /** |
| Gets suitable key size |
| @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. |
| @return CRYPT_OK if the input key size is acceptable. |
| */ |
| int xtea_keysize(int *keysize) |
| { |
| LTC_ARGCHK(keysize != NULL); |
| if (*keysize < 16) { |
| return CRYPT_INVALID_KEYSIZE; |
| } |
| *keysize = 16; |
| return CRYPT_OK; |
| } |
| |
| |
| #endif |
| |
| |
| |
| |
| /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/xtea.c,v $ */ |
| /* $Revision: 1.12 $ */ |
| /* $Date: 2006/11/08 23:01:06 $ */ |