| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "common.h" |
| |
| int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) |
| { |
| typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); |
| static functype func[4]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<4; ++k) |
| func[k] = 0; |
| |
| func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run); |
| func[TR ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run); |
| func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| Scalar* c = reinterpret_cast<Scalar*>(pc); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| |
| // check arguments |
| int info = 0; |
| if(OP(*opa)==INVALID) info = 1; |
| else if(*m<0) info = 2; |
| else if(*n<0) info = 3; |
| else if(*lda<std::max(1,*m)) info = 6; |
| else if(*incb==0) info = 8; |
| else if(*incc==0) info = 11; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6); |
| |
| if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) |
| return 0; |
| |
| int actual_m = *m; |
| int actual_n = *n; |
| if(OP(*opa)!=NOTR) |
| std::swap(actual_m,actual_n); |
| |
| Scalar* actual_b = get_compact_vector(b,actual_n,*incb); |
| Scalar* actual_c = get_compact_vector(c,actual_m,*incc); |
| |
| if(beta!=Scalar(1)) |
| { |
| if(beta==Scalar(0)) vector(actual_c, actual_m).setZero(); |
| else vector(actual_c, actual_m) *= beta; |
| } |
| |
| int code = OP(*opa); |
| func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha); |
| |
| if(actual_b!=b) delete[] actual_b; |
| if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc); |
| |
| return 1; |
| } |
| |
| int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| { |
| typedef void (*functype)(int, const Scalar *, int, Scalar *); |
| static functype func[16]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<16; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); |
| func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); |
| func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); |
| func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); |
| func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run); |
| |
| func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); |
| func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); |
| func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); |
| func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); |
| func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(OP(*opa)==INVALID) info = 2; |
| else if(DIAG(*diag)==INVALID) info = 3; |
| else if(*n<0) info = 4; |
| else if(*lda<std::max(1,*n)) info = 6; |
| else if(*incb==0) info = 8; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6); |
| |
| Scalar* actual_b = get_compact_vector(b,*n,*incb); |
| |
| int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| func[code](*n, a, *lda, actual_b); |
| |
| if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb); |
| |
| return 0; |
| } |
| |
| |
| |
| int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) |
| { |
| typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar); |
| static functype func[16]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<16; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); |
| func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); |
| func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); |
| func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); |
| func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run); |
| |
| func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); |
| func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); |
| func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* b = reinterpret_cast<Scalar*>(pb); |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(OP(*opa)==INVALID) info = 2; |
| else if(DIAG(*diag)==INVALID) info = 3; |
| else if(*n<0) info = 4; |
| else if(*lda<std::max(1,*n)) info = 6; |
| else if(*incb==0) info = 8; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6); |
| |
| if(*n==0) |
| return 1; |
| |
| Scalar* actual_b = get_compact_vector(b,*n,*incb); |
| Matrix<Scalar,Dynamic,1> res(*n); |
| res.setZero(); |
| |
| int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| if(code>=16 || func[code]==0) |
| return 0; |
| |
| func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); |
| |
| copy_back(res.data(),b,*n,*incb); |
| if(actual_b!=b) delete[] actual_b; |
| |
| return 0; |
| } |
| |
| /** GBMV performs one of the matrix-vector operations |
| * |
| * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, |
| * |
| * where alpha and beta are scalars, x and y are vectors and A is an |
| * m by n band matrix, with kl sub-diagonals and ku super-diagonals. |
| */ |
| int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, |
| RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| Scalar beta = *reinterpret_cast<Scalar*>(pbeta); |
| int coeff_rows = *kl+*ku+1; |
| |
| int info = 0; |
| if(OP(*trans)==INVALID) info = 1; |
| else if(*m<0) info = 2; |
| else if(*n<0) info = 3; |
| else if(*kl<0) info = 4; |
| else if(*ku<0) info = 5; |
| else if(*lda<coeff_rows) info = 8; |
| else if(*incx==0) info = 10; |
| else if(*incy==0) info = 13; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6); |
| |
| if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) |
| return 0; |
| |
| int actual_m = *m; |
| int actual_n = *n; |
| if(OP(*trans)!=NOTR) |
| std::swap(actual_m,actual_n); |
| |
| Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| Scalar* actual_y = get_compact_vector(y,actual_m,*incy); |
| |
| if(beta!=Scalar(1)) |
| { |
| if(beta==Scalar(0)) vector(actual_y, actual_m).setZero(); |
| else vector(actual_y, actual_m) *= beta; |
| } |
| |
| MatrixType mat_coeffs(a,coeff_rows,*n,*lda); |
| |
| int nb = std::min(*n,(*m)+(*ku)); |
| for(int j=0; j<nb; ++j) |
| { |
| int start = std::max(0,j - *ku); |
| int end = std::min((*m)-1,j + *kl); |
| int len = end - start + 1; |
| int offset = (*ku) - j + start; |
| if(OP(*trans)==NOTR) |
| vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); |
| else if(OP(*trans)==TR) |
| actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); |
| else |
| actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); |
| } |
| |
| if(actual_x!=x) delete[] actual_x; |
| if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); |
| |
| return 0; |
| } |
| |
| #if 0 |
| /** TBMV performs one of the matrix-vector operations |
| * |
| * x := A*x, or x := A'*x, |
| * |
| * where x is an n element vector and A is an n by n unit, or non-unit, |
| * upper or lower triangular band matrix, with ( k + 1 ) diagonals. |
| */ |
| int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) |
| { |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| int coeff_rows = *k + 1; |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(OP(*opa)==INVALID) info = 2; |
| else if(DIAG(*diag)==INVALID) info = 3; |
| else if(*n<0) info = 4; |
| else if(*k<0) info = 5; |
| else if(*lda<coeff_rows) info = 7; |
| else if(*incx==0) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6); |
| |
| if(*n==0) |
| return 0; |
| |
| int actual_n = *n; |
| |
| Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| |
| MatrixType mat_coeffs(a,coeff_rows,*n,*lda); |
| |
| int ku = UPLO(*uplo)==UPPER ? *k : 0; |
| int kl = UPLO(*uplo)==LOWER ? *k : 0; |
| |
| for(int j=0; j<*n; ++j) |
| { |
| int start = std::max(0,j - ku); |
| int end = std::min((*m)-1,j + kl); |
| int len = end - start + 1; |
| int offset = (ku) - j + start; |
| |
| if(OP(*trans)==NOTR) |
| vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); |
| else if(OP(*trans)==TR) |
| actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); |
| else |
| actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); |
| } |
| |
| if(actual_x!=x) delete[] actual_x; |
| if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); |
| |
| return 0; |
| } |
| #endif |
| |
| /** DTBSV solves one of the systems of equations |
| * |
| * A*x = b, or A'*x = b, |
| * |
| * where b and x are n element vectors and A is an n by n unit, or |
| * non-unit, upper or lower triangular band matrix, with ( k + 1 ) |
| * diagonals. |
| * |
| * No test for singularity or near-singularity is included in this |
| * routine. Such tests must be performed before calling this routine. |
| */ |
| int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) |
| { |
| typedef void (*functype)(int, int, const Scalar *, int, Scalar *); |
| static functype func[16]; |
| |
| static bool init = false; |
| if(!init) |
| { |
| for(int k=0; k<16; ++k) |
| func[k] = 0; |
| |
| func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run); |
| func[TR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run); |
| func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run); |
| func[TR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run); |
| func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run); |
| |
| func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run); |
| func[TR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run); |
| func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); |
| |
| func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run); |
| func[TR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run); |
| func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); |
| |
| init = true; |
| } |
| |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| int coeff_rows = *k+1; |
| |
| int info = 0; |
| if(UPLO(*uplo)==INVALID) info = 1; |
| else if(OP(*op)==INVALID) info = 2; |
| else if(DIAG(*diag)==INVALID) info = 3; |
| else if(*n<0) info = 4; |
| else if(*k<0) info = 5; |
| else if(*lda<coeff_rows) info = 7; |
| else if(*incx==0) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6); |
| |
| if(*n==0 || (*k==0 && DIAG(*diag)==UNIT)) |
| return 0; |
| |
| int actual_n = *n; |
| |
| Scalar* actual_x = get_compact_vector(x,actual_n,*incx); |
| |
| int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); |
| if(code>=16 || func[code]==0) |
| return 0; |
| |
| func[code](*n, *k, a, *lda, actual_x); |
| |
| if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); |
| |
| return 0; |
| } |
| |
| /** DTPMV performs one of the matrix-vector operations |
| * |
| * x := A*x, or x := A'*x, |
| * |
| * where x is an n element vector and A is an n by n unit, or non-unit, |
| * upper or lower triangular matrix, supplied in packed form. |
| */ |
| // int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx) |
| // { |
| // return 1; |
| // } |
| |
| /** DTPSV solves one of the systems of equations |
| * |
| * A*x = b, or A'*x = b, |
| * |
| * where b and x are n element vectors and A is an n by n unit, or |
| * non-unit, upper or lower triangular matrix, supplied in packed form. |
| * |
| * No test for singularity or near-singularity is included in this |
| * routine. Such tests must be performed before calling this routine. |
| */ |
| // int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx) |
| // { |
| // return 1; |
| // } |
| |
| /** DGER performs the rank 1 operation |
| * |
| * A := alpha*x*y' + A, |
| * |
| * where alpha is a scalar, x is an m element vector, y is an n element |
| * vector and A is an m by n matrix. |
| */ |
| int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda) |
| { |
| Scalar* x = reinterpret_cast<Scalar*>(px); |
| Scalar* y = reinterpret_cast<Scalar*>(py); |
| Scalar* a = reinterpret_cast<Scalar*>(pa); |
| Scalar alpha = *reinterpret_cast<Scalar*>(palpha); |
| |
| int info = 0; |
| if(*m<0) info = 1; |
| else if(*n<0) info = 2; |
| else if(*incx==0) info = 5; |
| else if(*incy==0) info = 7; |
| else if(*lda<std::max(1,*m)) info = 9; |
| if(info) |
| return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6); |
| |
| if(alpha==Scalar(0)) |
| return 1; |
| |
| Scalar* x_cpy = get_compact_vector(x,*m,*incx); |
| Scalar* y_cpy = get_compact_vector(y,*n,*incy); |
| |
| // TODO perform direct calls to underlying implementation |
| matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint(); |
| |
| if(x_cpy!=x) delete[] x_cpy; |
| if(y_cpy!=y) delete[] y_cpy; |
| |
| return 1; |
| } |
| |
| |