blob: cd8332973e6ef58c661930df26517da0c4addc6d [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "common.h"
// y = alpha*A*x + beta*y
int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
if(*n==0)
return 0;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) vector(actual_y, *n).setZero();
else vector(actual_y, *n) *= beta;
}
// TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*ldc<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
if(*n==0 || alpha==Scalar(0)) return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
Matrix<Scalar,Dynamic,Dynamic> m2(matrix(c,*n,*n,*ldc));
// TODO check why this is not accurate enough for lapack tests
// if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
// else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(UPLO(*uplo)==LO)
for(int j=0;j<*n;++j)
matrix(c,*n,*n,*ldc).col(j).tail(*n-j) += alpha * x_cpy[j] * vector(x_cpy+j,*n-j);
else
for(int j=0;j<*n;++j)
matrix(c,*n,*n,*ldc).col(j).head(j+1) += alpha * x_cpy[j] * vector(x_cpy,j+1);
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*ldc<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1;
}
/** DSBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric band matrix, with k super-diagonals.
*/
// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric matrix, supplied in packed form.
*
*/
// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPR performs the symmetric rank 1 operation
*
* A := alpha*x*x' + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n symmetric matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
// {
// return 1;
// }
/** DSPR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y' + alpha*y*x' + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n symmetric matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
// {
// return 1;
// }