| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PERMUTATIONMATRIX_H |
| #define EIGEN_PERMUTATIONMATRIX_H |
| |
| namespace Eigen { |
| |
| template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl; |
| |
| /** \class PermutationBase |
| * \ingroup Core_Module |
| * |
| * \brief Base class for permutations |
| * |
| * \param Derived the derived class |
| * |
| * This class is the base class for all expressions representing a permutation matrix, |
| * internally stored as a vector of integers. |
| * The convention followed here is that if \f$ \sigma \f$ is a permutation, the corresponding permutation matrix |
| * \f$ P_\sigma \f$ is such that if \f$ (e_1,\ldots,e_p) \f$ is the canonical basis, we have: |
| * \f[ P_\sigma(e_i) = e_{\sigma(i)}. \f] |
| * This convention ensures that for any two permutations \f$ \sigma, \tau \f$, we have: |
| * \f[ P_{\sigma\circ\tau} = P_\sigma P_\tau. \f] |
| * |
| * Permutation matrices are square and invertible. |
| * |
| * Notice that in addition to the member functions and operators listed here, there also are non-member |
| * operator* to multiply any kind of permutation object with any kind of matrix expression (MatrixBase) |
| * on either side. |
| * |
| * \sa class PermutationMatrix, class PermutationWrapper |
| */ |
| |
| namespace internal { |
| |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> |
| struct permut_matrix_product_retval; |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false> |
| struct permut_sparsematrix_product_retval; |
| enum PermPermProduct_t {PermPermProduct}; |
| |
| } // end namespace internal |
| |
| template<typename Derived> |
| class PermutationBase : public EigenBase<Derived> |
| { |
| typedef internal::traits<Derived> Traits; |
| typedef EigenBase<Derived> Base; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef typename Traits::IndicesType IndicesType; |
| enum { |
| Flags = Traits::Flags, |
| CoeffReadCost = Traits::CoeffReadCost, |
| RowsAtCompileTime = Traits::RowsAtCompileTime, |
| ColsAtCompileTime = Traits::ColsAtCompileTime, |
| MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Traits::MaxColsAtCompileTime |
| }; |
| typedef typename Traits::Scalar Scalar; |
| typedef typename Traits::Index Index; |
| typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime> |
| DenseMatrixType; |
| typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index> |
| PlainPermutationType; |
| using Base::derived; |
| #endif |
| |
| /** Copies the other permutation into *this */ |
| template<typename OtherDerived> |
| Derived& operator=(const PermutationBase<OtherDerived>& other) |
| { |
| indices() = other.indices(); |
| return derived(); |
| } |
| |
| /** Assignment from the Transpositions \a tr */ |
| template<typename OtherDerived> |
| Derived& operator=(const TranspositionsBase<OtherDerived>& tr) |
| { |
| setIdentity(tr.size()); |
| for(Index k=size()-1; k>=0; --k) |
| applyTranspositionOnTheRight(k,tr.coeff(k)); |
| return derived(); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| Derived& operator=(const PermutationBase& other) |
| { |
| indices() = other.indices(); |
| return derived(); |
| } |
| #endif |
| |
| /** \returns the number of rows */ |
| inline Index rows() const { return indices().size(); } |
| |
| /** \returns the number of columns */ |
| inline Index cols() const { return indices().size(); } |
| |
| /** \returns the size of a side of the respective square matrix, i.e., the number of indices */ |
| inline Index size() const { return indices().size(); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename DenseDerived> |
| void evalTo(MatrixBase<DenseDerived>& other) const |
| { |
| other.setZero(); |
| for (int i=0; i<rows();++i) |
| other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1); |
| } |
| #endif |
| |
| /** \returns a Matrix object initialized from this permutation matrix. Notice that it |
| * is inefficient to return this Matrix object by value. For efficiency, favor using |
| * the Matrix constructor taking EigenBase objects. |
| */ |
| DenseMatrixType toDenseMatrix() const |
| { |
| return derived(); |
| } |
| |
| /** const version of indices(). */ |
| const IndicesType& indices() const { return derived().indices(); } |
| /** \returns a reference to the stored array representing the permutation. */ |
| IndicesType& indices() { return derived().indices(); } |
| |
| /** Resizes to given size. |
| */ |
| inline void resize(Index size) |
| { |
| indices().resize(size); |
| } |
| |
| /** Sets *this to be the identity permutation matrix */ |
| void setIdentity() |
| { |
| for(Index i = 0; i < size(); ++i) |
| indices().coeffRef(i) = i; |
| } |
| |
| /** Sets *this to be the identity permutation matrix of given size. |
| */ |
| void setIdentity(Index size) |
| { |
| resize(size); |
| setIdentity(); |
| } |
| |
| /** Multiplies *this by the transposition \f$(ij)\f$ on the left. |
| * |
| * \returns a reference to *this. |
| * |
| * \warning This is much slower than applyTranspositionOnTheRight(int,int): |
| * this has linear complexity and requires a lot of branching. |
| * |
| * \sa applyTranspositionOnTheRight(int,int) |
| */ |
| Derived& applyTranspositionOnTheLeft(Index i, Index j) |
| { |
| eigen_assert(i>=0 && j>=0 && i<size() && j<size()); |
| for(Index k = 0; k < size(); ++k) |
| { |
| if(indices().coeff(k) == i) indices().coeffRef(k) = j; |
| else if(indices().coeff(k) == j) indices().coeffRef(k) = i; |
| } |
| return derived(); |
| } |
| |
| /** Multiplies *this by the transposition \f$(ij)\f$ on the right. |
| * |
| * \returns a reference to *this. |
| * |
| * This is a fast operation, it only consists in swapping two indices. |
| * |
| * \sa applyTranspositionOnTheLeft(int,int) |
| */ |
| Derived& applyTranspositionOnTheRight(Index i, Index j) |
| { |
| eigen_assert(i>=0 && j>=0 && i<size() && j<size()); |
| std::swap(indices().coeffRef(i), indices().coeffRef(j)); |
| return derived(); |
| } |
| |
| /** \returns the inverse permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| inline Transpose<PermutationBase> inverse() const |
| { return derived(); } |
| /** \returns the tranpose permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| inline Transpose<PermutationBase> transpose() const |
| { return derived(); } |
| |
| /**** multiplication helpers to hopefully get RVO ****/ |
| |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| protected: |
| template<typename OtherDerived> |
| void assignTranspose(const PermutationBase<OtherDerived>& other) |
| { |
| for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i; |
| } |
| template<typename Lhs,typename Rhs> |
| void assignProduct(const Lhs& lhs, const Rhs& rhs) |
| { |
| eigen_assert(lhs.cols() == rhs.rows()); |
| for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i)); |
| } |
| #endif |
| |
| public: |
| |
| /** \returns the product permutation matrix. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<typename Other> |
| inline PlainPermutationType operator*(const PermutationBase<Other>& other) const |
| { return PlainPermutationType(internal::PermPermProduct, derived(), other.derived()); } |
| |
| /** \returns the product of a permutation with another inverse permutation. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<typename Other> |
| inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const |
| { return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); } |
| |
| /** \returns the product of an inverse permutation with another permutation. |
| * |
| * \note \note_try_to_help_rvo |
| */ |
| template<typename Other> friend |
| inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm) |
| { return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); } |
| |
| protected: |
| |
| }; |
| |
| /** \class PermutationMatrix |
| * \ingroup Core_Module |
| * |
| * \brief Permutation matrix |
| * |
| * \param SizeAtCompileTime the number of rows/cols, or Dynamic |
| * \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it. |
| * \param IndexType the interger type of the indices |
| * |
| * This class represents a permutation matrix, internally stored as a vector of integers. |
| * |
| * \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix |
| */ |
| |
| namespace internal { |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> |
| struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > |
| : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > |
| { |
| typedef IndexType Index; |
| typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType; |
| }; |
| } |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType> |
| class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> > |
| { |
| typedef PermutationBase<PermutationMatrix> Base; |
| typedef internal::traits<PermutationMatrix> Traits; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef typename Traits::IndicesType IndicesType; |
| #endif |
| |
| inline PermutationMatrix() |
| {} |
| |
| /** Constructs an uninitialized permutation matrix of given size. |
| */ |
| inline PermutationMatrix(int size) : m_indices(size) |
| {} |
| |
| /** Copy constructor. */ |
| template<typename OtherDerived> |
| inline PermutationMatrix(const PermutationBase<OtherDerived>& other) |
| : m_indices(other.indices()) {} |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** Standard copy constructor. Defined only to prevent a default copy constructor |
| * from hiding the other templated constructor */ |
| inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {} |
| #endif |
| |
| /** Generic constructor from expression of the indices. The indices |
| * array has the meaning that the permutations sends each integer i to indices[i]. |
| * |
| * \warning It is your responsibility to check that the indices array that you passes actually |
| * describes a permutation, i.e., each value between 0 and n-1 occurs exactly once, where n is the |
| * array's size. |
| */ |
| template<typename Other> |
| explicit inline PermutationMatrix(const MatrixBase<Other>& indices) : m_indices(indices) |
| {} |
| |
| /** Convert the Transpositions \a tr to a permutation matrix */ |
| template<typename Other> |
| explicit PermutationMatrix(const TranspositionsBase<Other>& tr) |
| : m_indices(tr.size()) |
| { |
| *this = tr; |
| } |
| |
| /** Copies the other permutation into *this */ |
| template<typename Other> |
| PermutationMatrix& operator=(const PermutationBase<Other>& other) |
| { |
| m_indices = other.indices(); |
| return *this; |
| } |
| |
| /** Assignment from the Transpositions \a tr */ |
| template<typename Other> |
| PermutationMatrix& operator=(const TranspositionsBase<Other>& tr) |
| { |
| return Base::operator=(tr.derived()); |
| } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| PermutationMatrix& operator=(const PermutationMatrix& other) |
| { |
| m_indices = other.m_indices; |
| return *this; |
| } |
| #endif |
| |
| /** const version of indices(). */ |
| const IndicesType& indices() const { return m_indices; } |
| /** \returns a reference to the stored array representing the permutation. */ |
| IndicesType& indices() { return m_indices; } |
| |
| |
| /**** multiplication helpers to hopefully get RVO ****/ |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename Other> |
| PermutationMatrix(const Transpose<PermutationBase<Other> >& other) |
| : m_indices(other.nestedPermutation().size()) |
| { |
| for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i; |
| } |
| template<typename Lhs,typename Rhs> |
| PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs) |
| : m_indices(lhs.indices().size()) |
| { |
| Base::assignProduct(lhs,rhs); |
| } |
| #endif |
| |
| protected: |
| |
| IndicesType m_indices; |
| }; |
| |
| |
| namespace internal { |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> |
| struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > |
| : traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> > |
| { |
| typedef IndexType Index; |
| typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType; |
| }; |
| } |
| |
| template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess> |
| class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> |
| : public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> > |
| { |
| typedef PermutationBase<Map> Base; |
| typedef internal::traits<Map> Traits; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef typename Traits::IndicesType IndicesType; |
| typedef typename IndicesType::Scalar Index; |
| #endif |
| |
| inline Map(const Index* indices) |
| : m_indices(indices) |
| {} |
| |
| inline Map(const Index* indices, Index size) |
| : m_indices(indices,size) |
| {} |
| |
| /** Copies the other permutation into *this */ |
| template<typename Other> |
| Map& operator=(const PermutationBase<Other>& other) |
| { return Base::operator=(other.derived()); } |
| |
| /** Assignment from the Transpositions \a tr */ |
| template<typename Other> |
| Map& operator=(const TranspositionsBase<Other>& tr) |
| { return Base::operator=(tr.derived()); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| /** This is a special case of the templated operator=. Its purpose is to |
| * prevent a default operator= from hiding the templated operator=. |
| */ |
| Map& operator=(const Map& other) |
| { |
| m_indices = other.m_indices; |
| return *this; |
| } |
| #endif |
| |
| /** const version of indices(). */ |
| const IndicesType& indices() const { return m_indices; } |
| /** \returns a reference to the stored array representing the permutation. */ |
| IndicesType& indices() { return m_indices; } |
| |
| protected: |
| |
| IndicesType m_indices; |
| }; |
| |
| /** \class PermutationWrapper |
| * \ingroup Core_Module |
| * |
| * \brief Class to view a vector of integers as a permutation matrix |
| * |
| * \param _IndicesType the type of the vector of integer (can be any compatible expression) |
| * |
| * This class allows to view any vector expression of integers as a permutation matrix. |
| * |
| * \sa class PermutationBase, class PermutationMatrix |
| */ |
| |
| struct PermutationStorage {}; |
| |
| template<typename _IndicesType> class TranspositionsWrapper; |
| namespace internal { |
| template<typename _IndicesType> |
| struct traits<PermutationWrapper<_IndicesType> > |
| { |
| typedef PermutationStorage StorageKind; |
| typedef typename _IndicesType::Scalar Scalar; |
| typedef typename _IndicesType::Scalar Index; |
| typedef _IndicesType IndicesType; |
| enum { |
| RowsAtCompileTime = _IndicesType::SizeAtCompileTime, |
| ColsAtCompileTime = _IndicesType::SizeAtCompileTime, |
| MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime, |
| Flags = 0, |
| CoeffReadCost = _IndicesType::CoeffReadCost |
| }; |
| }; |
| } |
| |
| template<typename _IndicesType> |
| class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> > |
| { |
| typedef PermutationBase<PermutationWrapper> Base; |
| typedef internal::traits<PermutationWrapper> Traits; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef typename Traits::IndicesType IndicesType; |
| #endif |
| |
| inline PermutationWrapper(const IndicesType& indices) |
| : m_indices(indices) |
| {} |
| |
| /** const version of indices(). */ |
| const typename internal::remove_all<typename IndicesType::Nested>::type& |
| indices() const { return m_indices; } |
| |
| protected: |
| |
| typename IndicesType::Nested m_indices; |
| }; |
| |
| /** \returns the matrix with the permutation applied to the columns. |
| */ |
| template<typename Derived, typename PermutationDerived> |
| inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight> |
| operator*(const MatrixBase<Derived>& matrix, |
| const PermutationBase<PermutationDerived> &permutation) |
| { |
| return internal::permut_matrix_product_retval |
| <PermutationDerived, Derived, OnTheRight> |
| (permutation.derived(), matrix.derived()); |
| } |
| |
| /** \returns the matrix with the permutation applied to the rows. |
| */ |
| template<typename Derived, typename PermutationDerived> |
| inline const internal::permut_matrix_product_retval |
| <PermutationDerived, Derived, OnTheLeft> |
| operator*(const PermutationBase<PermutationDerived> &permutation, |
| const MatrixBase<Derived>& matrix) |
| { |
| return internal::permut_matrix_product_retval |
| <PermutationDerived, Derived, OnTheLeft> |
| (permutation.derived(), matrix.derived()); |
| } |
| |
| namespace internal { |
| |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed> |
| struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > |
| { |
| typedef typename MatrixType::PlainObject ReturnType; |
| }; |
| |
| template<typename PermutationType, typename MatrixType, int Side, bool Transposed> |
| struct permut_matrix_product_retval |
| : public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> > |
| { |
| typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned; |
| |
| permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix) |
| : m_permutation(perm), m_matrix(matrix) |
| {} |
| |
| inline int rows() const { return m_matrix.rows(); } |
| inline int cols() const { return m_matrix.cols(); } |
| |
| template<typename Dest> inline void evalTo(Dest& dst) const |
| { |
| const int n = Side==OnTheLeft ? rows() : cols(); |
| |
| if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix)) |
| { |
| // apply the permutation inplace |
| Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size()); |
| mask.fill(false); |
| int r = 0; |
| while(r < m_permutation.size()) |
| { |
| // search for the next seed |
| while(r<m_permutation.size() && mask[r]) r++; |
| if(r>=m_permutation.size()) |
| break; |
| // we got one, let's follow it until we are back to the seed |
| int k0 = r++; |
| int kPrev = k0; |
| mask.coeffRef(k0) = true; |
| for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k)) |
| { |
| Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k) |
| .swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| (dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev)); |
| |
| mask.coeffRef(k) = true; |
| kPrev = k; |
| } |
| } |
| } |
| else |
| { |
| for(int i = 0; i < n; ++i) |
| { |
| Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime> |
| (dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i) |
| |
| = |
| |
| Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime> |
| (m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i); |
| } |
| } |
| } |
| |
| protected: |
| const PermutationType& m_permutation; |
| typename MatrixType::Nested m_matrix; |
| }; |
| |
| /* Template partial specialization for transposed/inverse permutations */ |
| |
| template<typename Derived> |
| struct traits<Transpose<PermutationBase<Derived> > > |
| : traits<Derived> |
| {}; |
| |
| } // end namespace internal |
| |
| template<typename Derived> |
| class Transpose<PermutationBase<Derived> > |
| : public EigenBase<Transpose<PermutationBase<Derived> > > |
| { |
| typedef Derived PermutationType; |
| typedef typename PermutationType::IndicesType IndicesType; |
| typedef typename PermutationType::PlainPermutationType PlainPermutationType; |
| public: |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| typedef internal::traits<PermutationType> Traits; |
| typedef typename Derived::DenseMatrixType DenseMatrixType; |
| enum { |
| Flags = Traits::Flags, |
| CoeffReadCost = Traits::CoeffReadCost, |
| RowsAtCompileTime = Traits::RowsAtCompileTime, |
| ColsAtCompileTime = Traits::ColsAtCompileTime, |
| MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = Traits::MaxColsAtCompileTime |
| }; |
| typedef typename Traits::Scalar Scalar; |
| #endif |
| |
| Transpose(const PermutationType& p) : m_permutation(p) {} |
| |
| inline int rows() const { return m_permutation.rows(); } |
| inline int cols() const { return m_permutation.cols(); } |
| |
| #ifndef EIGEN_PARSED_BY_DOXYGEN |
| template<typename DenseDerived> |
| void evalTo(MatrixBase<DenseDerived>& other) const |
| { |
| other.setZero(); |
| for (int i=0; i<rows();++i) |
| other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1); |
| } |
| #endif |
| |
| /** \return the equivalent permutation matrix */ |
| PlainPermutationType eval() const { return *this; } |
| |
| DenseMatrixType toDenseMatrix() const { return *this; } |
| |
| /** \returns the matrix with the inverse permutation applied to the columns. |
| */ |
| template<typename OtherDerived> friend |
| inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true> |
| operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm) |
| { |
| return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived()); |
| } |
| |
| /** \returns the matrix with the inverse permutation applied to the rows. |
| */ |
| template<typename OtherDerived> |
| inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true> |
| operator*(const MatrixBase<OtherDerived>& matrix) const |
| { |
| return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived()); |
| } |
| |
| const PermutationType& nestedPermutation() const { return m_permutation; } |
| |
| protected: |
| const PermutationType& m_permutation; |
| }; |
| |
| template<typename Derived> |
| const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() const |
| { |
| return derived(); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_PERMUTATIONMATRIX_H |