| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_EULERANGLES_H |
| #define EIGEN_EULERANGLES_H |
| |
| namespace Eigen { |
| |
| /** \geometry_module \ingroup Geometry_Module |
| * |
| * |
| * \returns the Euler-angles of the rotation matrix \c *this using the convention defined by the triplet (\a a0,\a a1,\a a2) |
| * |
| * Each of the three parameters \a a0,\a a1,\a a2 represents the respective rotation axis as an integer in {0,1,2}. |
| * For instance, in: |
| * \code Vector3f ea = mat.eulerAngles(2, 0, 2); \endcode |
| * "2" represents the z axis and "0" the x axis, etc. The returned angles are such that |
| * we have the following equality: |
| * \code |
| * mat == AngleAxisf(ea[0], Vector3f::UnitZ()) |
| * * AngleAxisf(ea[1], Vector3f::UnitX()) |
| * * AngleAxisf(ea[2], Vector3f::UnitZ()); \endcode |
| * This corresponds to the right-multiply conventions (with right hand side frames). |
| */ |
| template<typename Derived> |
| inline Matrix<typename MatrixBase<Derived>::Scalar,3,1> |
| MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const |
| { |
| /* Implemented from Graphics Gems IV */ |
| EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3) |
| |
| Matrix<Scalar,3,1> res; |
| typedef Matrix<typename Derived::Scalar,2,1> Vector2; |
| const Scalar epsilon = NumTraits<Scalar>::dummy_precision(); |
| |
| const Index odd = ((a0+1)%3 == a1) ? 0 : 1; |
| const Index i = a0; |
| const Index j = (a0 + 1 + odd)%3; |
| const Index k = (a0 + 2 - odd)%3; |
| |
| if (a0==a2) |
| { |
| Scalar s = Vector2(coeff(j,i) , coeff(k,i)).norm(); |
| res[1] = internal::atan2(s, coeff(i,i)); |
| if (s > epsilon) |
| { |
| res[0] = internal::atan2(coeff(j,i), coeff(k,i)); |
| res[2] = internal::atan2(coeff(i,j),-coeff(i,k)); |
| } |
| else |
| { |
| res[0] = Scalar(0); |
| res[2] = (coeff(i,i)>0?1:-1)*internal::atan2(-coeff(k,j), coeff(j,j)); |
| } |
| } |
| else |
| { |
| Scalar c = Vector2(coeff(i,i) , coeff(i,j)).norm(); |
| res[1] = internal::atan2(-coeff(i,k), c); |
| if (c > epsilon) |
| { |
| res[0] = internal::atan2(coeff(j,k), coeff(k,k)); |
| res[2] = internal::atan2(coeff(i,j), coeff(i,i)); |
| } |
| else |
| { |
| res[0] = Scalar(0); |
| res[2] = (coeff(i,k)>0?1:-1)*internal::atan2(-coeff(k,j), coeff(j,j)); |
| } |
| } |
| if (!odd) |
| res = -res; |
| return res; |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_EULERANGLES_H |