| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_SPARSE_SELFADJOINTVIEW_H |
| #define EIGEN_SPARSE_SELFADJOINTVIEW_H |
| |
| namespace Eigen { |
| |
| /** \ingroup SparseCore_Module |
| * \class SparseSelfAdjointView |
| * |
| * \brief Pseudo expression to manipulate a triangular sparse matrix as a selfadjoint matrix. |
| * |
| * \param MatrixType the type of the dense matrix storing the coefficients |
| * \param UpLo can be either \c #Lower or \c #Upper |
| * |
| * This class is an expression of a sefladjoint matrix from a triangular part of a matrix |
| * with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() |
| * and most of the time this is the only way that it is used. |
| * |
| * \sa SparseMatrixBase::selfadjointView() |
| */ |
| template<typename Lhs, typename Rhs, int UpLo> |
| class SparseSelfAdjointTimeDenseProduct; |
| |
| template<typename Lhs, typename Rhs, int UpLo> |
| class DenseTimeSparseSelfAdjointProduct; |
| |
| namespace internal { |
| |
| template<typename MatrixType, unsigned int UpLo> |
| struct traits<SparseSelfAdjointView<MatrixType,UpLo> > : traits<MatrixType> { |
| }; |
| |
| template<int SrcUpLo,int DstUpLo,typename MatrixType,int DestOrder> |
| void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0); |
| |
| template<int UpLo,typename MatrixType,int DestOrder> |
| void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm = 0); |
| |
| } |
| |
| template<typename MatrixType, unsigned int UpLo> class SparseSelfAdjointView |
| : public EigenBase<SparseSelfAdjointView<MatrixType,UpLo> > |
| { |
| public: |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef Matrix<Index,Dynamic,1> VectorI; |
| typedef typename MatrixType::Nested MatrixTypeNested; |
| typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; |
| |
| inline SparseSelfAdjointView(const MatrixType& matrix) : m_matrix(matrix) |
| { |
| eigen_assert(rows()==cols() && "SelfAdjointView is only for squared matrices"); |
| } |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| /** \internal \returns a reference to the nested matrix */ |
| const _MatrixTypeNested& matrix() const { return m_matrix; } |
| _MatrixTypeNested& matrix() { return m_matrix.const_cast_derived(); } |
| |
| /** Efficient sparse self-adjoint matrix times dense vector/matrix product */ |
| template<typename OtherDerived> |
| SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo> |
| operator*(const MatrixBase<OtherDerived>& rhs) const |
| { |
| return SparseSelfAdjointTimeDenseProduct<MatrixType,OtherDerived,UpLo>(m_matrix, rhs.derived()); |
| } |
| |
| /** Efficient dense vector/matrix times sparse self-adjoint matrix product */ |
| template<typename OtherDerived> friend |
| DenseTimeSparseSelfAdjointProduct<OtherDerived,MatrixType,UpLo> |
| operator*(const MatrixBase<OtherDerived>& lhs, const SparseSelfAdjointView& rhs) |
| { |
| return DenseTimeSparseSelfAdjointProduct<OtherDerived,_MatrixTypeNested,UpLo>(lhs.derived(), rhs.m_matrix); |
| } |
| |
| /** Perform a symmetric rank K update of the selfadjoint matrix \c *this: |
| * \f$ this = this + \alpha ( u u^* ) \f$ where \a u is a vector or matrix. |
| * |
| * \returns a reference to \c *this |
| * |
| * To perform \f$ this = this + \alpha ( u^* u ) \f$ you can simply |
| * call this function with u.adjoint(). |
| */ |
| template<typename DerivedU> |
| SparseSelfAdjointView& rankUpdate(const SparseMatrixBase<DerivedU>& u, Scalar alpha = Scalar(1)); |
| |
| /** \internal triggered by sparse_matrix = SparseSelfadjointView; */ |
| template<typename DestScalar,int StorageOrder> void evalTo(SparseMatrix<DestScalar,StorageOrder,Index>& _dest) const |
| { |
| internal::permute_symm_to_fullsymm<UpLo>(m_matrix, _dest); |
| } |
| |
| template<typename DestScalar> void evalTo(DynamicSparseMatrix<DestScalar,ColMajor,Index>& _dest) const |
| { |
| // TODO directly evaluate into _dest; |
| SparseMatrix<DestScalar,ColMajor,Index> tmp(_dest.rows(),_dest.cols()); |
| internal::permute_symm_to_fullsymm<UpLo>(m_matrix, tmp); |
| _dest = tmp; |
| } |
| |
| /** \returns an expression of P H P^-1 */ |
| SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo> twistedBy(const PermutationMatrix<Dynamic,Dynamic,Index>& perm) const |
| { |
| return SparseSymmetricPermutationProduct<_MatrixTypeNested,UpLo>(m_matrix, perm); |
| } |
| |
| template<typename SrcMatrixType,int SrcUpLo> |
| SparseSelfAdjointView& operator=(const SparseSymmetricPermutationProduct<SrcMatrixType,SrcUpLo>& permutedMatrix) |
| { |
| permutedMatrix.evalTo(*this); |
| return *this; |
| } |
| |
| |
| SparseSelfAdjointView& operator=(const SparseSelfAdjointView& src) |
| { |
| PermutationMatrix<Dynamic> pnull; |
| return *this = src.twistedBy(pnull); |
| } |
| |
| template<typename SrcMatrixType,unsigned int SrcUpLo> |
| SparseSelfAdjointView& operator=(const SparseSelfAdjointView<SrcMatrixType,SrcUpLo>& src) |
| { |
| PermutationMatrix<Dynamic> pnull; |
| return *this = src.twistedBy(pnull); |
| } |
| |
| |
| // const SparseLLT<PlainObject, UpLo> llt() const; |
| // const SparseLDLT<PlainObject, UpLo> ldlt() const; |
| |
| protected: |
| |
| typename MatrixType::Nested m_matrix; |
| mutable VectorI m_countPerRow; |
| mutable VectorI m_countPerCol; |
| }; |
| |
| /*************************************************************************** |
| * Implementation of SparseMatrixBase methods |
| ***************************************************************************/ |
| |
| template<typename Derived> |
| template<unsigned int UpLo> |
| const SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() const |
| { |
| return derived(); |
| } |
| |
| template<typename Derived> |
| template<unsigned int UpLo> |
| SparseSelfAdjointView<Derived, UpLo> SparseMatrixBase<Derived>::selfadjointView() |
| { |
| return derived(); |
| } |
| |
| /*************************************************************************** |
| * Implementation of SparseSelfAdjointView methods |
| ***************************************************************************/ |
| |
| template<typename MatrixType, unsigned int UpLo> |
| template<typename DerivedU> |
| SparseSelfAdjointView<MatrixType,UpLo>& |
| SparseSelfAdjointView<MatrixType,UpLo>::rankUpdate(const SparseMatrixBase<DerivedU>& u, Scalar alpha) |
| { |
| SparseMatrix<Scalar,MatrixType::Flags&RowMajorBit?RowMajor:ColMajor> tmp = u * u.adjoint(); |
| if(alpha==Scalar(0)) |
| m_matrix.const_cast_derived() = tmp.template triangularView<UpLo>(); |
| else |
| m_matrix.const_cast_derived() += alpha * tmp.template triangularView<UpLo>(); |
| |
| return *this; |
| } |
| |
| /*************************************************************************** |
| * Implementation of sparse self-adjoint time dense matrix |
| ***************************************************************************/ |
| |
| namespace internal { |
| template<typename Lhs, typename Rhs, int UpLo> |
| struct traits<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo> > |
| : traits<ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> > |
| { |
| typedef Dense StorageKind; |
| }; |
| } |
| |
| template<typename Lhs, typename Rhs, int UpLo> |
| class SparseSelfAdjointTimeDenseProduct |
| : public ProductBase<SparseSelfAdjointTimeDenseProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> |
| { |
| public: |
| EIGEN_PRODUCT_PUBLIC_INTERFACE(SparseSelfAdjointTimeDenseProduct) |
| |
| SparseSelfAdjointTimeDenseProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) |
| {} |
| |
| template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const |
| { |
| // TODO use alpha |
| eigen_assert(alpha==Scalar(1) && "alpha != 1 is not implemented yet, sorry"); |
| typedef typename internal::remove_all<Lhs>::type _Lhs; |
| typedef typename internal::remove_all<Rhs>::type _Rhs; |
| typedef typename _Lhs::InnerIterator LhsInnerIterator; |
| enum { |
| LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit, |
| ProcessFirstHalf = |
| ((UpLo&(Upper|Lower))==(Upper|Lower)) |
| || ( (UpLo&Upper) && !LhsIsRowMajor) |
| || ( (UpLo&Lower) && LhsIsRowMajor), |
| ProcessSecondHalf = !ProcessFirstHalf |
| }; |
| for (Index j=0; j<m_lhs.outerSize(); ++j) |
| { |
| LhsInnerIterator i(m_lhs,j); |
| if (ProcessSecondHalf) |
| { |
| while (i && i.index()<j) ++i; |
| if(i && i.index()==j) |
| { |
| dest.row(j) += i.value() * m_rhs.row(j); |
| ++i; |
| } |
| } |
| for(; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) |
| { |
| Index a = LhsIsRowMajor ? j : i.index(); |
| Index b = LhsIsRowMajor ? i.index() : j; |
| typename Lhs::Scalar v = i.value(); |
| dest.row(a) += (v) * m_rhs.row(b); |
| dest.row(b) += internal::conj(v) * m_rhs.row(a); |
| } |
| if (ProcessFirstHalf && i && (i.index()==j)) |
| dest.row(j) += i.value() * m_rhs.row(j); |
| } |
| } |
| |
| private: |
| SparseSelfAdjointTimeDenseProduct& operator=(const SparseSelfAdjointTimeDenseProduct&); |
| }; |
| |
| namespace internal { |
| template<typename Lhs, typename Rhs, int UpLo> |
| struct traits<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo> > |
| : traits<ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> > |
| {}; |
| } |
| |
| template<typename Lhs, typename Rhs, int UpLo> |
| class DenseTimeSparseSelfAdjointProduct |
| : public ProductBase<DenseTimeSparseSelfAdjointProduct<Lhs,Rhs,UpLo>, Lhs, Rhs> |
| { |
| public: |
| EIGEN_PRODUCT_PUBLIC_INTERFACE(DenseTimeSparseSelfAdjointProduct) |
| |
| DenseTimeSparseSelfAdjointProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs) |
| {} |
| |
| template<typename Dest> void scaleAndAddTo(Dest& /*dest*/, Scalar /*alpha*/) const |
| { |
| // TODO |
| } |
| |
| private: |
| DenseTimeSparseSelfAdjointProduct& operator=(const DenseTimeSparseSelfAdjointProduct&); |
| }; |
| |
| /*************************************************************************** |
| * Implementation of symmetric copies and permutations |
| ***************************************************************************/ |
| namespace internal { |
| |
| template<typename MatrixType, int UpLo> |
| struct traits<SparseSymmetricPermutationProduct<MatrixType,UpLo> > : traits<MatrixType> { |
| }; |
| |
| template<int UpLo,typename MatrixType,int DestOrder> |
| void permute_symm_to_fullsymm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DestOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef SparseMatrix<Scalar,DestOrder,Index> Dest; |
| typedef Matrix<Index,Dynamic,1> VectorI; |
| |
| Dest& dest(_dest.derived()); |
| enum { |
| StorageOrderMatch = int(Dest::IsRowMajor) == int(MatrixType::IsRowMajor) |
| }; |
| |
| Index size = mat.rows(); |
| VectorI count; |
| count.resize(size); |
| count.setZero(); |
| dest.resize(size,size); |
| for(Index j = 0; j<size; ++j) |
| { |
| Index jp = perm ? perm[j] : j; |
| for(typename MatrixType::InnerIterator it(mat,j); it; ++it) |
| { |
| Index i = it.index(); |
| Index r = it.row(); |
| Index c = it.col(); |
| Index ip = perm ? perm[i] : i; |
| if(UpLo==(Upper|Lower)) |
| count[StorageOrderMatch ? jp : ip]++; |
| else if(r==c) |
| count[ip]++; |
| else if(( UpLo==Lower && r>c) || ( UpLo==Upper && r<c)) |
| { |
| count[ip]++; |
| count[jp]++; |
| } |
| } |
| } |
| Index nnz = count.sum(); |
| |
| // reserve space |
| dest.resizeNonZeros(nnz); |
| dest.outerIndexPtr()[0] = 0; |
| for(Index j=0; j<size; ++j) |
| dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; |
| for(Index j=0; j<size; ++j) |
| count[j] = dest.outerIndexPtr()[j]; |
| |
| // copy data |
| for(Index j = 0; j<size; ++j) |
| { |
| for(typename MatrixType::InnerIterator it(mat,j); it; ++it) |
| { |
| Index i = it.index(); |
| Index r = it.row(); |
| Index c = it.col(); |
| |
| Index jp = perm ? perm[j] : j; |
| Index ip = perm ? perm[i] : i; |
| |
| if(UpLo==(Upper|Lower)) |
| { |
| Index k = count[StorageOrderMatch ? jp : ip]++; |
| dest.innerIndexPtr()[k] = StorageOrderMatch ? ip : jp; |
| dest.valuePtr()[k] = it.value(); |
| } |
| else if(r==c) |
| { |
| Index k = count[ip]++; |
| dest.innerIndexPtr()[k] = ip; |
| dest.valuePtr()[k] = it.value(); |
| } |
| else if(( (UpLo&Lower)==Lower && r>c) || ( (UpLo&Upper)==Upper && r<c)) |
| { |
| if(!StorageOrderMatch) |
| std::swap(ip,jp); |
| Index k = count[jp]++; |
| dest.innerIndexPtr()[k] = ip; |
| dest.valuePtr()[k] = it.value(); |
| k = count[ip]++; |
| dest.innerIndexPtr()[k] = jp; |
| dest.valuePtr()[k] = internal::conj(it.value()); |
| } |
| } |
| } |
| } |
| |
| template<int _SrcUpLo,int _DstUpLo,typename MatrixType,int DstOrder> |
| void permute_symm_to_symm(const MatrixType& mat, SparseMatrix<typename MatrixType::Scalar,DstOrder,typename MatrixType::Index>& _dest, const typename MatrixType::Index* perm) |
| { |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| SparseMatrix<Scalar,DstOrder,Index>& dest(_dest.derived()); |
| typedef Matrix<Index,Dynamic,1> VectorI; |
| enum { |
| SrcOrder = MatrixType::IsRowMajor ? RowMajor : ColMajor, |
| StorageOrderMatch = int(SrcOrder) == int(DstOrder), |
| DstUpLo = DstOrder==RowMajor ? (_DstUpLo==Upper ? Lower : Upper) : _DstUpLo, |
| SrcUpLo = SrcOrder==RowMajor ? (_SrcUpLo==Upper ? Lower : Upper) : _SrcUpLo |
| }; |
| |
| Index size = mat.rows(); |
| VectorI count(size); |
| count.setZero(); |
| dest.resize(size,size); |
| for(Index j = 0; j<size; ++j) |
| { |
| Index jp = perm ? perm[j] : j; |
| for(typename MatrixType::InnerIterator it(mat,j); it; ++it) |
| { |
| Index i = it.index(); |
| if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j)) |
| continue; |
| |
| Index ip = perm ? perm[i] : i; |
| count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; |
| } |
| } |
| dest.outerIndexPtr()[0] = 0; |
| for(Index j=0; j<size; ++j) |
| dest.outerIndexPtr()[j+1] = dest.outerIndexPtr()[j] + count[j]; |
| dest.resizeNonZeros(dest.outerIndexPtr()[size]); |
| for(Index j=0; j<size; ++j) |
| count[j] = dest.outerIndexPtr()[j]; |
| |
| for(Index j = 0; j<size; ++j) |
| { |
| |
| for(typename MatrixType::InnerIterator it(mat,j); it; ++it) |
| { |
| Index i = it.index(); |
| if((int(SrcUpLo)==int(Lower) && i<j) || (int(SrcUpLo)==int(Upper) && i>j)) |
| continue; |
| |
| Index jp = perm ? perm[j] : j; |
| Index ip = perm? perm[i] : i; |
| |
| Index k = count[int(DstUpLo)==int(Lower) ? (std::min)(ip,jp) : (std::max)(ip,jp)]++; |
| dest.innerIndexPtr()[k] = int(DstUpLo)==int(Lower) ? (std::max)(ip,jp) : (std::min)(ip,jp); |
| |
| if(!StorageOrderMatch) std::swap(ip,jp); |
| if( ((int(DstUpLo)==int(Lower) && ip<jp) || (int(DstUpLo)==int(Upper) && ip>jp))) |
| dest.valuePtr()[k] = conj(it.value()); |
| else |
| dest.valuePtr()[k] = it.value(); |
| } |
| } |
| } |
| |
| } |
| |
| template<typename MatrixType,int UpLo> |
| class SparseSymmetricPermutationProduct |
| : public EigenBase<SparseSymmetricPermutationProduct<MatrixType,UpLo> > |
| { |
| public: |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| protected: |
| typedef PermutationMatrix<Dynamic,Dynamic,Index> Perm; |
| public: |
| typedef Matrix<Index,Dynamic,1> VectorI; |
| typedef typename MatrixType::Nested MatrixTypeNested; |
| typedef typename internal::remove_all<MatrixTypeNested>::type _MatrixTypeNested; |
| |
| SparseSymmetricPermutationProduct(const MatrixType& mat, const Perm& perm) |
| : m_matrix(mat), m_perm(perm) |
| {} |
| |
| inline Index rows() const { return m_matrix.rows(); } |
| inline Index cols() const { return m_matrix.cols(); } |
| |
| template<typename DestScalar, int Options, typename DstIndex> |
| void evalTo(SparseMatrix<DestScalar,Options,DstIndex>& _dest) const |
| { |
| internal::permute_symm_to_fullsymm<UpLo>(m_matrix,_dest,m_perm.indices().data()); |
| } |
| |
| template<typename DestType,unsigned int DestUpLo> void evalTo(SparseSelfAdjointView<DestType,DestUpLo>& dest) const |
| { |
| internal::permute_symm_to_symm<UpLo,DestUpLo>(m_matrix,dest.matrix(),m_perm.indices().data()); |
| } |
| |
| protected: |
| MatrixTypeNested m_matrix; |
| const Perm& m_perm; |
| |
| }; |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_SPARSE_SELFADJOINTVIEW_H |