| |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out |
| // -DNOGMM -DNOMTL -DCSPARSE |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| #ifndef SIZE |
| #define SIZE 100000 |
| #endif |
| |
| #ifndef NBPERROW |
| #define NBPERROW 24 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 2 |
| #endif |
| |
| #ifndef NBTRIES |
| #define NBTRIES 2 |
| #endif |
| |
| #ifndef KK |
| #define KK 10 |
| #endif |
| |
| #ifndef NOGOOGLE |
| #define EIGEN_GOOGLEHASH_SUPPORT |
| #include <google/sparse_hash_map> |
| #endif |
| |
| #include "BenchSparseUtil.h" |
| |
| #define CHECK_MEM |
| // #define CHECK_MEM std/**/::cout << "check mem\n"; getchar(); |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j=0; _j<NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k=0; _k<REPEAT; ++_k) { \ |
| X \ |
| } timer.stop(); } |
| |
| typedef std::vector<Vector2i> Coordinates; |
| typedef std::vector<float> Values; |
| |
| EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals); |
| EIGEN_DONT_INLINE Scalar* setrand_mtl(const Coordinates& coords, const Values& vals); |
| |
| int main(int argc, char *argv[]) |
| { |
| int rows = SIZE; |
| int cols = SIZE; |
| bool fullyrand = true; |
| |
| BenchTimer timer; |
| Coordinates coords; |
| Values values; |
| if(fullyrand) |
| { |
| Coordinates pool; |
| pool.reserve(cols*NBPERROW); |
| std::cerr << "fill pool" << "\n"; |
| for (int i=0; i<cols*NBPERROW; ) |
| { |
| // DynamicSparseMatrix<int> stencil(SIZE,SIZE); |
| Vector2i ij(internal::random<int>(0,rows-1),internal::random<int>(0,cols-1)); |
| // if(stencil.coeffRef(ij.x(), ij.y())==0) |
| { |
| // stencil.coeffRef(ij.x(), ij.y()) = 1; |
| pool.push_back(ij); |
| |
| } |
| ++i; |
| } |
| std::cerr << "pool ok" << "\n"; |
| int n = cols*NBPERROW*KK; |
| coords.reserve(n); |
| values.reserve(n); |
| for (int i=0; i<n; ++i) |
| { |
| int i = internal::random<int>(0,pool.size()); |
| coords.push_back(pool[i]); |
| values.push_back(internal::random<Scalar>()); |
| } |
| } |
| else |
| { |
| for (int j=0; j<cols; ++j) |
| for (int i=0; i<NBPERROW; ++i) |
| { |
| coords.push_back(Vector2i(internal::random<int>(0,rows-1),j)); |
| values.push_back(internal::random<Scalar>()); |
| } |
| } |
| std::cout << "nnz = " << coords.size() << "\n"; |
| CHECK_MEM |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| { |
| BENCH(setrand_eigen_dense(coords,values);) |
| std::cout << "Eigen Dense\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| // if (!fullyrand) |
| // { |
| // BENCH(setinnerrand_eigen(coords,values);) |
| // std::cout << "Eigen fillrand\t" << timer.value() << "\n"; |
| // } |
| { |
| BENCH(setrand_eigen_dynamic(coords,values);) |
| std::cout << "Eigen dynamic\t" << timer.value() << "\n"; |
| } |
| // { |
| // BENCH(setrand_eigen_compact(coords,values);) |
| // std::cout << "Eigen compact\t" << timer.value() << "\n"; |
| // } |
| { |
| BENCH(setrand_eigen_sumeq(coords,values);) |
| std::cout << "Eigen sumeq\t" << timer.value() << "\n"; |
| } |
| { |
| // BENCH(setrand_eigen_gnu_hash(coords,values);) |
| // std::cout << "Eigen std::map\t" << timer.value() << "\n"; |
| } |
| { |
| BENCH(setrand_scipy(coords,values);) |
| std::cout << "scipy\t" << timer.value() << "\n"; |
| } |
| #ifndef NOGOOGLE |
| { |
| BENCH(setrand_eigen_google_dense(coords,values);) |
| std::cout << "Eigen google dense\t" << timer.value() << "\n"; |
| } |
| { |
| BENCH(setrand_eigen_google_sparse(coords,values);) |
| std::cout << "Eigen google sparse\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| #ifndef NOUBLAS |
| { |
| // BENCH(setrand_ublas_mapped(coords,values);) |
| // std::cout << "ublas mapped\t" << timer.value() << "\n"; |
| } |
| { |
| BENCH(setrand_ublas_genvec(coords,values);) |
| std::cout << "ublas vecofvec\t" << timer.value() << "\n"; |
| } |
| /*{ |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_compressed(coords,values); |
| timer.stop(); |
| std::cout << "ublas comp\t" << timer.value() << "\n"; |
| } |
| { |
| timer.reset(); |
| timer.start(); |
| for (int k=0; k<REPEAT; ++k) |
| setrand_ublas_coord(coords,values); |
| timer.stop(); |
| std::cout << "ublas coord\t" << timer.value() << "\n"; |
| }*/ |
| #endif |
| |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| BENCH(setrand_mtl(coords,values)); |
| std::cout << "MTL\t" << timer.value() << "\n"; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setinnerrand_eigen(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| //mat.startFill(2000000/*coords.size()*/); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| mat.insert(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| mat.finalize(); |
| CHECK_MEM; |
| return 0; |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_dynamic(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); |
| mat.reserve(coords.size()/10); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| mat.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| mat.finalize(); |
| CHECK_MEM; |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_sumeq(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| int n = coords.size()/KK; |
| DynamicSparseMatrix<Scalar> mat(SIZE,SIZE); |
| for (int j=0; j<KK; ++j) |
| { |
| DynamicSparseMatrix<Scalar> aux(SIZE,SIZE); |
| mat.reserve(n); |
| for (int i=j*n; i<(j+1)*n; ++i) |
| { |
| aux.insert(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| aux.finalize(); |
| mat += aux; |
| } |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_compact(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| DynamicSparseMatrix<Scalar> setter(SIZE,SIZE); |
| setter.reserve(coords.size()/10); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| setter.coeffRef(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| SparseMatrix<Scalar> mat = setter; |
| CHECK_MEM; |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_gnu_hash(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, StdMapTraits > setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| setter(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| CHECK_MEM; |
| } |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| #ifndef NOGOOGLE |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_dense(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, GoogleDenseHashMapTraits> setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| setter(coords[i].x(), coords[i].y()) += vals[i]; |
| CHECK_MEM; |
| } |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_eigen_google_sparse(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| { |
| RandomSetter<SparseMatrix<Scalar>, GoogleSparseHashMapTraits> setter(mat); |
| for (int i=0; i<coords.size(); ++i) |
| setter(coords[i].x(), coords[i].y()) += vals[i]; |
| CHECK_MEM; |
| } |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| #endif |
| |
| |
| template <class T> |
| void coo_tocsr(const int n_row, |
| const int n_col, |
| const int nnz, |
| const Coordinates Aij, |
| const Values Ax, |
| int Bp[], |
| int Bj[], |
| T Bx[]) |
| { |
| //compute number of non-zero entries per row of A coo_tocsr |
| std::fill(Bp, Bp + n_row, 0); |
| |
| for (int n = 0; n < nnz; n++){ |
| Bp[Aij[n].x()]++; |
| } |
| |
| //cumsum the nnz per row to get Bp[] |
| for(int i = 0, cumsum = 0; i < n_row; i++){ |
| int temp = Bp[i]; |
| Bp[i] = cumsum; |
| cumsum += temp; |
| } |
| Bp[n_row] = nnz; |
| |
| //write Aj,Ax into Bj,Bx |
| for(int n = 0; n < nnz; n++){ |
| int row = Aij[n].x(); |
| int dest = Bp[row]; |
| |
| Bj[dest] = Aij[n].y(); |
| Bx[dest] = Ax[n]; |
| |
| Bp[row]++; |
| } |
| |
| for(int i = 0, last = 0; i <= n_row; i++){ |
| int temp = Bp[i]; |
| Bp[i] = last; |
| last = temp; |
| } |
| |
| //now Bp,Bj,Bx form a CSR representation (with possible duplicates) |
| } |
| |
| template< class T1, class T2 > |
| bool kv_pair_less(const std::pair<T1,T2>& x, const std::pair<T1,T2>& y){ |
| return x.first < y.first; |
| } |
| |
| |
| template<class I, class T> |
| void csr_sort_indices(const I n_row, |
| const I Ap[], |
| I Aj[], |
| T Ax[]) |
| { |
| std::vector< std::pair<I,T> > temp; |
| |
| for(I i = 0; i < n_row; i++){ |
| I row_start = Ap[i]; |
| I row_end = Ap[i+1]; |
| |
| temp.clear(); |
| |
| for(I jj = row_start; jj < row_end; jj++){ |
| temp.push_back(std::make_pair(Aj[jj],Ax[jj])); |
| } |
| |
| std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>); |
| |
| for(I jj = row_start, n = 0; jj < row_end; jj++, n++){ |
| Aj[jj] = temp[n].first; |
| Ax[jj] = temp[n].second; |
| } |
| } |
| } |
| |
| template <class I, class T> |
| void csr_sum_duplicates(const I n_row, |
| const I n_col, |
| I Ap[], |
| I Aj[], |
| T Ax[]) |
| { |
| I nnz = 0; |
| I row_end = 0; |
| for(I i = 0; i < n_row; i++){ |
| I jj = row_end; |
| row_end = Ap[i+1]; |
| while( jj < row_end ){ |
| I j = Aj[jj]; |
| T x = Ax[jj]; |
| jj++; |
| while( jj < row_end && Aj[jj] == j ){ |
| x += Ax[jj]; |
| jj++; |
| } |
| Aj[nnz] = j; |
| Ax[nnz] = x; |
| nnz++; |
| } |
| Ap[i+1] = nnz; |
| } |
| } |
| |
| EIGEN_DONT_INLINE Scalar* setrand_scipy(const Coordinates& coords, const Values& vals) |
| { |
| using namespace Eigen; |
| SparseMatrix<Scalar> mat(SIZE,SIZE); |
| mat.resizeNonZeros(coords.size()); |
| // std::cerr << "setrand_scipy...\n"; |
| coo_tocsr<Scalar>(SIZE,SIZE, coords.size(), coords, vals, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| // std::cerr << "coo_tocsr ok\n"; |
| |
| csr_sort_indices(SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| |
| csr_sum_duplicates(SIZE, SIZE, mat._outerIndexPtr(), mat._innerIndexPtr(), mat._valuePtr()); |
| |
| mat.resizeNonZeros(mat._outerIndexPtr()[SIZE]); |
| |
| return &mat.coeffRef(coords[0].x(), coords[0].y()); |
| } |
| |
| |
| #ifndef NOUBLAS |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_mapped(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| mapped_matrix<Scalar> aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| CHECK_MEM; |
| compressed_matrix<Scalar> mat(aux); |
| return 0;// &mat(coords[0].x(), coords[0].y()); |
| } |
| /*EIGEN_DONT_INLINE Scalar* setrand_ublas_coord(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| coordinate_matrix<Scalar> aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| compressed_matrix<Scalar> mat(aux); |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| } |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_compressed(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| compressed_matrix<Scalar> mat(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| mat(coords[i].x(), coords[i].y()) = vals[i]; |
| } |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| }*/ |
| EIGEN_DONT_INLINE Scalar* setrand_ublas_genvec(const Coordinates& coords, const Values& vals) |
| { |
| using namespace boost; |
| using namespace boost::numeric; |
| using namespace boost::numeric::ublas; |
| |
| // ublas::vector<coordinate_vector<Scalar> > foo; |
| generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(SIZE,SIZE); |
| for (int i=0; i<coords.size(); ++i) |
| { |
| aux(coords[i].x(), coords[i].y()) += vals[i]; |
| } |
| CHECK_MEM; |
| compressed_matrix<Scalar,row_major> mat(aux); |
| return 0;//&mat(coords[0].x(), coords[0].y()); |
| } |
| #endif |
| |
| #ifndef NOMTL |
| EIGEN_DONT_INLINE void setrand_mtl(const Coordinates& coords, const Values& vals); |
| #endif |
| |