| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN_NO_STATIC_ASSERT |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void adjoint(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Transpose.h Conjugate.h Dot.h |
| */ |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols), |
| square = SquareMatrixType::Random(rows, rows); |
| VectorType v1 = VectorType::Random(rows), |
| v2 = VectorType::Random(rows), |
| v3 = VectorType::Random(rows), |
| vzero = VectorType::Zero(rows); |
| |
| Scalar s1 = internal::random<Scalar>(), |
| s2 = internal::random<Scalar>(); |
| |
| // check basic compatibility of adjoint, transpose, conjugate |
| VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); |
| VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); |
| |
| // check multiplicative behavior |
| VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); |
| VERIFY_IS_APPROX((s1 * m1).adjoint(), internal::conj(s1) * m1.adjoint()); |
| |
| // check basic properties of dot, norm, norm2 |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| |
| RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); |
| VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref)); |
| VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref)); |
| VERIFY_IS_APPROX(internal::conj(v1.dot(v2)), v2.dot(v1)); |
| VERIFY_IS_APPROX(internal::real(v1.dot(v1)), v1.squaredNorm()); |
| if(!NumTraits<Scalar>::IsInteger) { |
| VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); |
| // check normalized() and normalize() |
| VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); |
| v3 = v1; |
| v3.normalize(); |
| VERIFY_IS_APPROX(v1, v1.norm() * v3); |
| VERIFY_IS_APPROX(v3, v1.normalized()); |
| VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); |
| } |
| VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)), static_cast<RealScalar>(1)); |
| |
| // check compatibility of dot and adjoint |
| |
| ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); |
| VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref)); |
| |
| // like in testBasicStuff, test operator() to check const-qualification |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1); |
| VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c))); |
| VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c))); |
| |
| if(!NumTraits<Scalar>::IsInteger) |
| { |
| // check that Random().normalized() works: tricky as the random xpr must be evaluated by |
| // normalized() in order to produce a consistent result. |
| VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); |
| } |
| |
| // check inplace transpose |
| m3 = m1; |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1.transpose()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1); |
| |
| // check inplace adjoint |
| m3 = m1; |
| m3.adjointInPlace(); |
| VERIFY_IS_APPROX(m3,m1.adjoint()); |
| m3.transposeInPlace(); |
| VERIFY_IS_APPROX(m3,m1.conjugate()); |
| |
| // check mixed dot product |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| RealVectorType rv1 = RealVectorType::Random(rows); |
| VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); |
| VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); |
| } |
| |
| void test_adjoint() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( adjoint(Matrix3d()) ); |
| CALL_SUBTEST_3( adjoint(Matrix4f()) ); |
| CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); |
| CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); |
| } |
| // test a large static matrix only once |
| CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); |
| |
| #ifdef EIGEN_TEST_PART_4 |
| { |
| MatrixXcf a(10,10), b(10,10); |
| VERIFY_RAISES_ASSERT(a = a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.transpose() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.transpose()); |
| VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint()); |
| VERIFY_RAISES_ASSERT(a = a.adjoint() + b); |
| VERIFY_RAISES_ASSERT(a = b + a.adjoint()); |
| |
| // no assertion should be triggered for these cases: |
| a.transpose() = a.transpose(); |
| a.transpose() += a.transpose(); |
| a.transpose() += a.transpose() + b; |
| a.transpose() = a.adjoint(); |
| a.transpose() += a.adjoint(); |
| a.transpose() += a.adjoint() + b; |
| } |
| #endif |
| } |
| |