| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #define EIGEN2_SUPPORT_STAGE15_RESOLVE_API_CONFLICTS_WARN |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| |
| template<typename Scalar> void geometry(void) |
| { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.cpp |
| */ |
| |
| typedef Matrix<Scalar,2,2> Matrix2; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,4,4> Matrix4; |
| typedef Matrix<Scalar,2,1> Vector2; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Matrix<Scalar,4,1> Vector4; |
| typedef eigen2_Quaternion<Scalar> Quaternionx; |
| typedef eigen2_AngleAxis<Scalar> AngleAxisx; |
| typedef eigen2_Transform<Scalar,2> Transform2; |
| typedef eigen2_Transform<Scalar,3> Transform3; |
| typedef eigen2_Scaling<Scalar,2> Scaling2; |
| typedef eigen2_Scaling<Scalar,3> Scaling3; |
| typedef eigen2_Translation<Scalar,2> Translation2; |
| typedef eigen2_Translation<Scalar,3> Translation3; |
| |
| Scalar largeEps = test_precision<Scalar>(); |
| if (ei_is_same_type<Scalar,float>::ret) |
| largeEps = 1e-2f; |
| |
| Vector3 v0 = Vector3::Random(), |
| v1 = Vector3::Random(), |
| v2 = Vector3::Random(); |
| Vector2 u0 = Vector2::Random(); |
| Matrix3 matrot1; |
| |
| Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); |
| |
| // cross product |
| VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1)); |
| Matrix3 m; |
| m << v0.normalized(), |
| (v0.cross(v1)).normalized(), |
| (v0.cross(v1).cross(v0)).normalized(); |
| VERIFY(m.isUnitary()); |
| |
| // Quaternion: Identity(), setIdentity(); |
| Quaternionx q1, q2; |
| q2.setIdentity(); |
| VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); |
| q1.coeffs().setRandom(); |
| VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); |
| |
| // unitOrthogonal |
| VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1)); |
| VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1)); |
| VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1)); |
| VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1)); |
| |
| |
| VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); |
| VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); |
| VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); |
| m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); |
| VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); |
| VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); |
| |
| q1 = AngleAxisx(a, v0.normalized()); |
| q2 = AngleAxisx(a, v1.normalized()); |
| |
| // angular distance |
| Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle()); |
| if (refangle>Scalar(M_PI)) |
| refangle = Scalar(2)*Scalar(M_PI) - refangle; |
| |
| if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps) |
| { |
| VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps)); |
| } |
| |
| // rotation matrix conversion |
| VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); |
| VERIFY_IS_APPROX(q1 * q2 * v2, |
| q1.toRotationMatrix() * q2.toRotationMatrix() * v2); |
| |
| VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox( |
| q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); |
| |
| q2 = q1.toRotationMatrix(); |
| VERIFY_IS_APPROX(q1*v1,q2*v1); |
| |
| matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) |
| * AngleAxisx(Scalar(0.2), Vector3::UnitY()) |
| * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); |
| VERIFY_IS_APPROX(matrot1 * v1, |
| AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() |
| * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() |
| * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); |
| |
| // angle-axis conversion |
| AngleAxisx aa = q1; |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
| |
| // from two vector creation |
| VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); |
| VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized()); |
| |
| // inverse and conjugate |
| VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); |
| VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); |
| |
| // AngleAxis |
| VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), |
| Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); |
| |
| AngleAxisx aa1; |
| m = q1.toRotationMatrix(); |
| aa1 = m; |
| VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), |
| Quaternionx(m).toRotationMatrix()); |
| |
| // Transform |
| // TODO complete the tests ! |
| a = 0; |
| while (ei_abs(a)<Scalar(0.1)) |
| a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); |
| q1 = AngleAxisx(a, v0.normalized()); |
| Transform3 t0, t1, t2; |
| // first test setIdentity() and Identity() |
| t0.setIdentity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| t0.matrix().setZero(); |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.linear() = q1.toRotationMatrix(); |
| t1.setIdentity(); |
| t1.linear() = q1.toRotationMatrix(); |
| |
| v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5)); |
| t0.scale(v0); |
| t1.prescale(v0); |
| |
| VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x()); |
| //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x())); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 << 1, 2, 3; |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t0.scale(v1); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.prescale(v1.cwise().inverse()); |
| t1.translate(-v0); |
| |
| VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| VERIFY_IS_APPROX(t1*v1, t0*v1); |
| |
| t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); |
| t1.setIdentity(); t1.scale(v0).rotate(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); |
| VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); |
| |
| // More transform constructors, operator=, operator*= |
| |
| Matrix3 mat3 = Matrix3::Random(); |
| Matrix4 mat4; |
| mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); |
| Transform3 tmat3(mat3), tmat4(mat4); |
| tmat4.matrix()(3,3) = Scalar(1); |
| VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); |
| |
| Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); |
| Vector3 v3 = Vector3::Random().normalized(); |
| AngleAxisx aa3(a3, v3); |
| Transform3 t3(aa3); |
| Transform3 t4; |
| t4 = aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| t4.rotate(AngleAxisx(-a3,v3)); |
| VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); |
| t4 *= aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| |
| v3 = Vector3::Random(); |
| Translation3 tv3(v3); |
| Transform3 t5(tv3); |
| t4 = tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| t4.translate(-v3); |
| VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); |
| t4 *= tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| |
| Scaling3 sv3(v3); |
| Transform3 t6(sv3); |
| t4 = sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| t4.scale(v3.cwise().inverse()); |
| VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity()); |
| t4 *= sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| |
| // matrix * transform |
| VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix()); |
| |
| // chained Transform product |
| VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); |
| |
| // check that Transform product doesn't have aliasing problems |
| t5 = t4; |
| t5 = t5*t5; |
| VERIFY_IS_APPROX(t5, t4*t4); |
| |
| // 2D transformation |
| Transform2 t20, t21; |
| Vector2 v20 = Vector2::Random(); |
| Vector2 v21 = Vector2::Random(); |
| for (int k=0; k<2; ++k) |
| if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); |
| VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), |
| t21.pretranslate(v20).scale(v21).matrix()); |
| |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); |
| VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) |
| * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); |
| |
| // Transform - new API |
| // 3D |
| t0.setIdentity(); |
| t0.rotate(q1).scale(v0).translate(v0); |
| // mat * scaling and mat * translation |
| t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // mat * transformation and scaling * translation |
| t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.prerotate(q1).prescale(v0).pretranslate(v0); |
| // translation * scaling and transformation * mat |
| t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // scaling * mat and translation * mat |
| t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(v0).translate(v0).rotate(q1); |
| // translation * mat and scaling * transformation |
| t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * scaling |
| t0.scale(v0); |
| t1 = t1 * Scaling3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * translation |
| t0.translate(v0); |
| t1 = t1 * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // translation * transformation |
| t0.pretranslate(v0); |
| t1 = Translation3(v0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // transform * quaternion |
| t0.rotate(q1); |
| t1 = t1 * q1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // translation * quaternion |
| t0.translate(v1).rotate(q1); |
| t1 = t1 * (Translation3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // scaling * quaternion |
| t0.scale(v1).rotate(q1); |
| t1 = t1 * (Scaling3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * transform |
| t0.prerotate(q1); |
| t1 = q1 * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * translation |
| t0.rotate(q1).translate(v1); |
| t1 = t1 * (q1 * Translation3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * scaling |
| t0.rotate(q1).scale(v1); |
| t1 = t1 * (q1 * Scaling3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // translation * vector |
| t0.setIdentity(); |
| t0.translate(v0); |
| VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1); |
| |
| // scaling * vector |
| t0.setIdentity(); |
| t0.scale(v0); |
| VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1); |
| |
| // test transform inversion |
| t0.setIdentity(); |
| t0.translate(v0); |
| t0.linear().setRandom(); |
| VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse()); |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1); |
| VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse()); |
| |
| // test extract rotation and scaling |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1).scale(v1); |
| VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1); |
| |
| Matrix3 mat_rotation, mat_scaling; |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1).scale(v1); |
| t0.computeRotationScaling(&mat_rotation, &mat_scaling); |
| VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); |
| VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| t0.computeScalingRotation(&mat_scaling, &mat_rotation); |
| VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); |
| VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| |
| // test casting |
| eigen2_Transform<float,3> t1f = t1.template cast<float>(); |
| VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); |
| eigen2_Transform<double,3> t1d = t1.template cast<double>(); |
| VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); |
| |
| Translation3 tr1(v0); |
| eigen2_Translation<float,3> tr1f = tr1.template cast<float>(); |
| VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); |
| eigen2_Translation<double,3> tr1d = tr1.template cast<double>(); |
| VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); |
| |
| Scaling3 sc1(v0); |
| eigen2_Scaling<float,3> sc1f = sc1.template cast<float>(); |
| VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1); |
| eigen2_Scaling<double,3> sc1d = sc1.template cast<double>(); |
| VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1); |
| |
| eigen2_Quaternion<float> q1f = q1.template cast<float>(); |
| VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); |
| eigen2_Quaternion<double> q1d = q1.template cast<double>(); |
| VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); |
| |
| eigen2_AngleAxis<float> aa1f = aa1.template cast<float>(); |
| VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); |
| eigen2_AngleAxis<double> aa1d = aa1.template cast<double>(); |
| VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); |
| |
| eigen2_Rotation2D<Scalar> r2d1(ei_random<Scalar>()); |
| eigen2_Rotation2D<float> r2d1f = r2d1.template cast<float>(); |
| VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); |
| eigen2_Rotation2D<double> r2d1d = r2d1.template cast<double>(); |
| VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); |
| |
| m = q1; |
| // m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized(); |
| // m.col(0) = Vector3(-1,0,0).normalized(); |
| // m.col(2) = m.col(0).cross(m.col(1)); |
| #define VERIFY_EULER(I,J,K, X,Y,Z) { \ |
| Vector3 ea = m.eulerAngles(I,J,K); \ |
| Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \ |
| VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \ |
| } |
| VERIFY_EULER(0,1,2, X,Y,Z); |
| VERIFY_EULER(0,1,0, X,Y,X); |
| VERIFY_EULER(0,2,1, X,Z,Y); |
| VERIFY_EULER(0,2,0, X,Z,X); |
| |
| VERIFY_EULER(1,2,0, Y,Z,X); |
| VERIFY_EULER(1,2,1, Y,Z,Y); |
| VERIFY_EULER(1,0,2, Y,X,Z); |
| VERIFY_EULER(1,0,1, Y,X,Y); |
| |
| VERIFY_EULER(2,0,1, Z,X,Y); |
| VERIFY_EULER(2,0,2, Z,X,Z); |
| VERIFY_EULER(2,1,0, Z,Y,X); |
| VERIFY_EULER(2,1,2, Z,Y,Z); |
| |
| // colwise/rowwise cross product |
| mat3.setRandom(); |
| Vector3 vec3 = Vector3::Random(); |
| Matrix3 mcross; |
| int i = ei_random<int>(0,2); |
| mcross = mat3.colwise().cross(vec3); |
| VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3)); |
| mcross = mat3.rowwise().cross(vec3); |
| VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3)); |
| |
| |
| } |
| |
| void test_eigen2_geometry_with_eigen2_prefix() |
| { |
| std::cout << "eigen2 support: " << EIGEN2_SUPPORT_STAGE << std::endl; |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( geometry<float>() ); |
| CALL_SUBTEST_2( geometry<double>() ); |
| } |
| } |