| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "product.h" |
| |
| void test_eigen2_product_large() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( product(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) ); |
| CALL_SUBTEST_2( product(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) ); |
| CALL_SUBTEST_3( product(MatrixXi(ei_random<int>(1,320), ei_random<int>(1,320))) ); |
| CALL_SUBTEST_4( product(MatrixXcf(ei_random<int>(1,50), ei_random<int>(1,50))) ); |
| CALL_SUBTEST_5( product(Matrix<float,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,320), ei_random<int>(1,320))) ); |
| } |
| |
| #ifdef EIGEN_TEST_PART_6 |
| { |
| // test a specific issue in DiagonalProduct |
| int N = 1000000; |
| VectorXf v = VectorXf::Ones(N); |
| MatrixXf m = MatrixXf::Ones(N,3); |
| m = (v+v).asDiagonal() * m; |
| VERIFY_IS_APPROX(m, MatrixXf::Constant(N,3,2)); |
| } |
| |
| { |
| // test deferred resizing in Matrix::operator= |
| MatrixXf a = MatrixXf::Random(10,4), b = MatrixXf::Random(4,10), c = a; |
| VERIFY_IS_APPROX((a = a * b), (c * b).eval()); |
| } |
| |
| { |
| MatrixXf mat1(10,10); mat1.setRandom(); |
| MatrixXf mat2(32,10); mat2.setRandom(); |
| MatrixXf result = mat1.row(2)*mat2.transpose(); |
| VERIFY_IS_APPROX(result, (mat1.row(2)*mat2.transpose()).eval()); |
| } |
| #endif |
| } |