| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| |
| template<typename Scalar, int Mode, int Options> void non_projective_only() |
| { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.cpp |
| */ |
| typedef Matrix<Scalar,2,2> Matrix2; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,4,4> Matrix4; |
| typedef Matrix<Scalar,2,1> Vector2; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Matrix<Scalar,4,1> Vector4; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| typedef Transform<Scalar,2,Mode,Options> Transform2; |
| typedef Transform<Scalar,3,Mode,Options> Transform3; |
| typedef Transform<Scalar,2,Isometry,Options> Isometry2; |
| typedef Transform<Scalar,3,Isometry,Options> Isometry3; |
| typedef typename Transform3::MatrixType MatrixType; |
| typedef DiagonalMatrix<Scalar,2> AlignedScaling2; |
| typedef DiagonalMatrix<Scalar,3> AlignedScaling3; |
| typedef Translation<Scalar,2> Translation2; |
| typedef Translation<Scalar,3> Translation3; |
| |
| Vector3 v0 = Vector3::Random(), |
| v1 = Vector3::Random(); |
| |
| Transform3 t0, t1, t2; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); |
| |
| Quaternionx q1, q2; |
| |
| q1 = AngleAxisx(a, v0.normalized()); |
| |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.linear() = q1.toRotationMatrix(); |
| |
| v0 << 50, 2, 1; |
| t0.scale(v0); |
| |
| VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).template head<3>().norm(), v0.x()); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 << 1, 2, 3; |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t0.scale(v1); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.prescale(v1.cwiseInverse()); |
| t1.translate(-v0); |
| |
| VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| VERIFY_IS_APPROX(t1*v1, t0*v1); |
| |
| // translation * vector |
| t0.setIdentity(); |
| t0.translate(v0); |
| VERIFY_IS_APPROX((t0 * v1).template head<3>(), Translation3(v0) * v1); |
| |
| // AlignedScaling * vector |
| t0.setIdentity(); |
| t0.scale(v0); |
| VERIFY_IS_APPROX((t0 * v1).template head<3>(), AlignedScaling3(v0) * v1); |
| } |
| |
| template<typename Scalar, int Mode, int Options> void transformations() |
| { |
| /* this test covers the following files: |
| Cross.h Quaternion.h, Transform.cpp |
| */ |
| typedef Matrix<Scalar,2,2> Matrix2; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Matrix<Scalar,4,4> Matrix4; |
| typedef Matrix<Scalar,2,1> Vector2; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Matrix<Scalar,4,1> Vector4; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| typedef Transform<Scalar,2,Mode,Options> Transform2; |
| typedef Transform<Scalar,3,Mode,Options> Transform3; |
| typedef Transform<Scalar,2,Isometry,Options> Isometry2; |
| typedef Transform<Scalar,3,Isometry,Options> Isometry3; |
| typedef typename Transform3::MatrixType MatrixType; |
| typedef DiagonalMatrix<Scalar,2> AlignedScaling2; |
| typedef DiagonalMatrix<Scalar,3> AlignedScaling3; |
| typedef Translation<Scalar,2> Translation2; |
| typedef Translation<Scalar,3> Translation3; |
| |
| Vector3 v0 = Vector3::Random(), |
| v1 = Vector3::Random(); |
| Matrix3 matrot1, m; |
| |
| Scalar a = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); |
| Scalar s0 = internal::random<Scalar>(); |
| |
| VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0); |
| VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0); |
| VERIFY_IS_APPROX(internal::cos(a)*v0.squaredNorm(), v0.dot(AngleAxisx(a, v0.unitOrthogonal()) * v0)); |
| m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint(); |
| VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized())); |
| VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m); |
| |
| Quaternionx q1, q2; |
| q1 = AngleAxisx(a, v0.normalized()); |
| q2 = AngleAxisx(a, v1.normalized()); |
| |
| // rotation matrix conversion |
| matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX()) |
| * AngleAxisx(Scalar(0.2), Vector3::UnitY()) |
| * AngleAxisx(Scalar(0.3), Vector3::UnitZ()); |
| VERIFY_IS_APPROX(matrot1 * v1, |
| AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix() |
| * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix() |
| * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1))); |
| |
| // angle-axis conversion |
| AngleAxisx aa = AngleAxisx(q1); |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
| |
| aa.fromRotationMatrix(aa.toRotationMatrix()); |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
| |
| // AngleAxis |
| VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(), |
| Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix()); |
| |
| AngleAxisx aa1; |
| m = q1.toRotationMatrix(); |
| aa1 = m; |
| VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(), |
| Quaternionx(m).toRotationMatrix()); |
| |
| // Transform |
| // TODO complete the tests ! |
| a = 0; |
| while (internal::abs(a)<Scalar(0.1)) |
| a = internal::random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI)); |
| q1 = AngleAxisx(a, v0.normalized()); |
| Transform3 t0, t1, t2; |
| |
| // first test setIdentity() and Identity() |
| t0.setIdentity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| t0.matrix().setZero(); |
| t0 = Transform3::Identity(); |
| VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity()); |
| |
| t0.setIdentity(); |
| t1.setIdentity(); |
| v1 << 1, 2, 3; |
| t0.linear() = q1.toRotationMatrix(); |
| t0.pretranslate(v0); |
| t0.scale(v1); |
| t1.linear() = q1.conjugate().toRotationMatrix(); |
| t1.prescale(v1.cwiseInverse()); |
| t1.translate(-v0); |
| |
| VERIFY((t0 * t1).matrix().isIdentity(test_precision<Scalar>())); |
| |
| t1.fromPositionOrientationScale(v0, q1, v1); |
| VERIFY_IS_APPROX(t1.matrix(), t0.matrix()); |
| |
| t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix()); |
| t1.setIdentity(); t1.scale(v0).rotate(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix()); |
| VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix()); |
| |
| // More transform constructors, operator=, operator*= |
| |
| Matrix3 mat3 = Matrix3::Random(); |
| Matrix4 mat4; |
| mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose(); |
| Transform3 tmat3(mat3), tmat4(mat4); |
| if(Mode!=int(AffineCompact)) |
| tmat4.matrix()(3,3) = Scalar(1); |
| VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix()); |
| |
| Scalar a3 = internal::random<Scalar>(-Scalar(M_PI), Scalar(M_PI)); |
| Vector3 v3 = Vector3::Random().normalized(); |
| AngleAxisx aa3(a3, v3); |
| Transform3 t3(aa3); |
| Transform3 t4; |
| t4 = aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| t4.rotate(AngleAxisx(-a3,v3)); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= aa3; |
| VERIFY_IS_APPROX(t3.matrix(), t4.matrix()); |
| |
| v3 = Vector3::Random(); |
| Translation3 tv3(v3); |
| Transform3 t5(tv3); |
| t4 = tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| t4.translate(-v3); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= tv3; |
| VERIFY_IS_APPROX(t5.matrix(), t4.matrix()); |
| |
| AlignedScaling3 sv3(v3); |
| Transform3 t6(sv3); |
| t4 = sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| t4.scale(v3.cwiseInverse()); |
| VERIFY_IS_APPROX(t4.matrix(), MatrixType::Identity()); |
| t4 *= sv3; |
| VERIFY_IS_APPROX(t6.matrix(), t4.matrix()); |
| |
| // matrix * transform |
| VERIFY_IS_APPROX((t3.matrix()*t4).matrix(), (t3*t4).matrix()); |
| |
| // chained Transform product |
| VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix()); |
| |
| // check that Transform product doesn't have aliasing problems |
| t5 = t4; |
| t5 = t5*t5; |
| VERIFY_IS_APPROX(t5, t4*t4); |
| |
| // 2D transformation |
| Transform2 t20, t21; |
| Vector2 v20 = Vector2::Random(); |
| Vector2 v21 = Vector2::Random(); |
| for (int k=0; k<2; ++k) |
| if (internal::abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3); |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix(); |
| VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(), |
| t21.pretranslate(v20).scale(v21).matrix()); |
| |
| t21.setIdentity(); |
| t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix(); |
| VERIFY( (t20.fromPositionOrientationScale(v20,a,v21) |
| * (t21.prescale(v21.cwiseInverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) ); |
| |
| // Transform - new API |
| // 3D |
| t0.setIdentity(); |
| t0.rotate(q1).scale(v0).translate(v0); |
| // mat * aligned scaling and mat * translation |
| t1 = (Matrix3(q1) * AlignedScaling3(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t1 = (Matrix3(q1) * Eigen::Scaling(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t1 = (q1 * Eigen::Scaling(v0)) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // mat * transformation and aligned scaling * translation |
| t1 = Matrix3(q1) * (AlignedScaling3(v0) * Translation3(v0)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| |
| t0.setIdentity(); |
| t0.scale(s0).translate(v0); |
| t1 = Eigen::Scaling(s0) * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t0.prescale(s0); |
| t1 = Eigen::Scaling(s0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0 = t3; |
| t0.scale(s0); |
| t1 = t3 * Eigen::Scaling(s0,s0,s0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| t0.prescale(s0); |
| t1 = Eigen::Scaling(s0,s0,s0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| |
| t0.setIdentity(); |
| t0.prerotate(q1).prescale(v0).pretranslate(v0); |
| // translation * aligned scaling and transformation * mat |
| t1 = (Translation3(v0) * AlignedScaling3(v0)) * Transform3(q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // scaling * mat and translation * mat |
| t1 = Translation3(v0) * (AlignedScaling3(v0) * Transform3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| t0.setIdentity(); |
| t0.scale(v0).translate(v0).rotate(q1); |
| // translation * mat and aligned scaling * transformation |
| t1 = AlignedScaling3(v0) * (Translation3(v0) * Transform3(q1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * aligned scaling |
| t0.scale(v0); |
| t1 *= AlignedScaling3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // transformation * translation |
| t0.translate(v0); |
| t1 = t1 * Translation3(v0); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| // translation * transformation |
| t0.pretranslate(v0); |
| t1 = Translation3(v0) * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // transform * quaternion |
| t0.rotate(q1); |
| t1 = t1 * q1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // translation * quaternion |
| t0.translate(v1).rotate(q1); |
| t1 = t1 * (Translation3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // aligned scaling * quaternion |
| t0.scale(v1).rotate(q1); |
| t1 = t1 * (AlignedScaling3(v1) * q1); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * transform |
| t0.prerotate(q1); |
| t1 = q1 * t1; |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * translation |
| t0.rotate(q1).translate(v1); |
| t1 = t1 * (q1 * Translation3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // quaternion * aligned scaling |
| t0.rotate(q1).scale(v1); |
| t1 = t1 * (q1 * AlignedScaling3(v1)); |
| VERIFY_IS_APPROX(t0.matrix(), t1.matrix()); |
| |
| // test transform inversion |
| t0.setIdentity(); |
| t0.translate(v0); |
| t0.linear().setRandom(); |
| Matrix4 t044 = Matrix4::Zero(); |
| t044(3,3) = 1; |
| t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); |
| VERIFY_IS_APPROX(t0.inverse(Affine).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1); |
| t044 = Matrix4::Zero(); |
| t044(3,3) = 1; |
| t044.block(0,0,t0.matrix().rows(),4) = t0.matrix(); |
| VERIFY_IS_APPROX(t0.inverse(Isometry).matrix(), t044.inverse().block(0,0,t0.matrix().rows(),4)); |
| |
| Matrix3 mat_rotation, mat_scaling; |
| t0.setIdentity(); |
| t0.translate(v0).rotate(q1).scale(v1); |
| t0.computeRotationScaling(&mat_rotation, &mat_scaling); |
| VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling); |
| VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| t0.computeScalingRotation(&mat_scaling, &mat_rotation); |
| VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation); |
| VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity()); |
| VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1)); |
| |
| // test casting |
| Transform<float,3,Mode> t1f = t1.template cast<float>(); |
| VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1); |
| Transform<double,3,Mode> t1d = t1.template cast<double>(); |
| VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1); |
| |
| Translation3 tr1(v0); |
| Translation<float,3> tr1f = tr1.template cast<float>(); |
| VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1); |
| Translation<double,3> tr1d = tr1.template cast<double>(); |
| VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1); |
| |
| AngleAxis<float> aa1f = aa1.template cast<float>(); |
| VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1); |
| AngleAxis<double> aa1d = aa1.template cast<double>(); |
| VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1); |
| |
| Rotation2D<Scalar> r2d1(internal::random<Scalar>()); |
| Rotation2D<float> r2d1f = r2d1.template cast<float>(); |
| VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1); |
| Rotation2D<double> r2d1d = r2d1.template cast<double>(); |
| VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1); |
| |
| t20 = Translation2(v20) * (Rotation2D<Scalar>(s0) * Scaling(s0)); |
| t21 = Translation2(v20) * Rotation2D<Scalar>(s0) * Scaling(s0); |
| VERIFY_IS_APPROX(t20,t21); |
| } |
| |
| template<typename Scalar> void transform_alignment() |
| { |
| typedef Transform<Scalar,3,Projective,AutoAlign> Projective3a; |
| typedef Transform<Scalar,3,Projective,DontAlign> Projective3u; |
| |
| EIGEN_ALIGN16 Scalar array1[16]; |
| EIGEN_ALIGN16 Scalar array2[16]; |
| EIGEN_ALIGN16 Scalar array3[16+1]; |
| Scalar* array3u = array3+1; |
| |
| Projective3a *p1 = ::new(reinterpret_cast<void*>(array1)) Projective3a; |
| Projective3u *p2 = ::new(reinterpret_cast<void*>(array2)) Projective3u; |
| Projective3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Projective3u; |
| |
| p1->matrix().setRandom(); |
| *p2 = *p1; |
| *p3 = *p1; |
| |
| VERIFY_IS_APPROX(p1->matrix(), p2->matrix()); |
| VERIFY_IS_APPROX(p1->matrix(), p3->matrix()); |
| |
| VERIFY_IS_APPROX( (*p1) * (*p1), (*p2)*(*p3)); |
| |
| #if defined(EIGEN_VECTORIZE) && EIGEN_ALIGN_STATICALLY |
| if(internal::packet_traits<Scalar>::Vectorizable) |
| VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Projective3a)); |
| #endif |
| } |
| |
| template<typename Scalar, int Dim, int Options> void transform_products() |
| { |
| typedef Matrix<Scalar,Dim+1,Dim+1> Mat; |
| typedef Transform<Scalar,Dim,Projective,Options> Proj; |
| typedef Transform<Scalar,Dim,Affine,Options> Aff; |
| typedef Transform<Scalar,Dim,AffineCompact,Options> AffC; |
| |
| Proj p; p.matrix().setRandom(); |
| Aff a; a.linear().setRandom(); a.translation().setRandom(); |
| AffC ac = a; |
| |
| Mat p_m(p.matrix()), a_m(a.matrix()); |
| |
| VERIFY_IS_APPROX((p*p).matrix(), p_m*p_m); |
| VERIFY_IS_APPROX((a*a).matrix(), a_m*a_m); |
| VERIFY_IS_APPROX((p*a).matrix(), p_m*a_m); |
| VERIFY_IS_APPROX((a*p).matrix(), a_m*p_m); |
| VERIFY_IS_APPROX((ac*a).matrix(), a_m*a_m); |
| VERIFY_IS_APPROX((a*ac).matrix(), a_m*a_m); |
| VERIFY_IS_APPROX((p*ac).matrix(), p_m*a_m); |
| VERIFY_IS_APPROX((ac*p).matrix(), a_m*p_m); |
| } |
| |
| void test_geo_transformations() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(( transformations<double,Affine,AutoAlign>() )); |
| CALL_SUBTEST_1(( non_projective_only<double,Affine,AutoAlign>() )); |
| |
| CALL_SUBTEST_2(( transformations<float,AffineCompact,AutoAlign>() )); |
| CALL_SUBTEST_2(( non_projective_only<float,AffineCompact,AutoAlign>() )); |
| CALL_SUBTEST_2(( transform_alignment<float>() )); |
| |
| CALL_SUBTEST_3(( transformations<double,Projective,AutoAlign>() )); |
| CALL_SUBTEST_3(( transformations<double,Projective,DontAlign>() )); |
| CALL_SUBTEST_3(( transform_alignment<double>() )); |
| |
| CALL_SUBTEST_4(( transformations<float,Affine,RowMajor|AutoAlign>() )); |
| CALL_SUBTEST_4(( non_projective_only<float,Affine,RowMajor>() )); |
| |
| CALL_SUBTEST_5(( transformations<double,AffineCompact,RowMajor|AutoAlign>() )); |
| CALL_SUBTEST_5(( non_projective_only<double,AffineCompact,RowMajor>() )); |
| |
| CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|AutoAlign>() )); |
| CALL_SUBTEST_6(( transformations<double,Projective,RowMajor|DontAlign>() )); |
| |
| |
| CALL_SUBTEST_7(( transform_products<double,3,RowMajor|AutoAlign>() )); |
| CALL_SUBTEST_7(( transform_products<float,2,AutoAlign>() )); |
| } |
| } |