| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include <cstdlib> |
| #include <cerrno> |
| #include <ctime> |
| #include <iostream> |
| #include <fstream> |
| #include <string> |
| #include <vector> |
| #include <typeinfo> |
| #include <limits> |
| #include <algorithm> |
| #include <sstream> |
| #include <complex> |
| #include <deque> |
| #include <queue> |
| |
| #define min(A,B) please_protect_your_min_with_parentheses |
| #define max(A,B) please_protect_your_max_with_parentheses |
| |
| #define FORBIDDEN_IDENTIFIER (this_identifier_is_forbidden_to_avoid_clashes) this_identifier_is_forbidden_to_avoid_clashes |
| // B0 is defined in POSIX header termios.h |
| #define B0 FORBIDDEN_IDENTIFIER |
| |
| // the following file is automatically generated by cmake |
| #include "split_test_helper.h" |
| |
| #ifdef NDEBUG |
| #undef NDEBUG |
| #endif |
| |
| // bounds integer values for AltiVec |
| #ifdef __ALTIVEC__ |
| #define EIGEN_MAKING_DOCS |
| #endif |
| |
| #ifndef EIGEN_TEST_FUNC |
| #error EIGEN_TEST_FUNC must be defined |
| #endif |
| |
| #define DEFAULT_REPEAT 10 |
| |
| #ifdef __ICC |
| // disable warning #279: controlling expression is constant |
| #pragma warning disable 279 |
| #endif |
| |
| namespace Eigen |
| { |
| static std::vector<std::string> g_test_stack; |
| static int g_repeat; |
| static unsigned int g_seed; |
| static bool g_has_set_repeat, g_has_set_seed; |
| } |
| |
| #define EI_PP_MAKE_STRING2(S) #S |
| #define EI_PP_MAKE_STRING(S) EI_PP_MAKE_STRING2(S) |
| |
| #define EIGEN_DEFAULT_IO_FORMAT IOFormat(4, 0, " ", "\n", "", "", "", "") |
| |
| #ifndef EIGEN_NO_ASSERTION_CHECKING |
| |
| namespace Eigen |
| { |
| static const bool should_raise_an_assert = false; |
| |
| // Used to avoid to raise two exceptions at a time in which |
| // case the exception is not properly caught. |
| // This may happen when a second exceptions is triggered in a destructor. |
| static bool no_more_assert = false; |
| static bool report_on_cerr_on_assert_failure = true; |
| |
| struct eigen_assert_exception |
| { |
| eigen_assert_exception(void) {} |
| ~eigen_assert_exception() { Eigen::no_more_assert = false; } |
| }; |
| } |
| // If EIGEN_DEBUG_ASSERTS is defined and if no assertion is triggered while |
| // one should have been, then the list of excecuted assertions is printed out. |
| // |
| // EIGEN_DEBUG_ASSERTS is not enabled by default as it |
| // significantly increases the compilation time |
| // and might even introduce side effects that would hide |
| // some memory errors. |
| #ifdef EIGEN_DEBUG_ASSERTS |
| |
| namespace Eigen |
| { |
| namespace internal |
| { |
| static bool push_assert = false; |
| } |
| static std::vector<std::string> eigen_assert_list; |
| } |
| #define eigen_assert(a) \ |
| if( (!(a)) && (!no_more_assert) ) \ |
| { \ |
| if(report_on_cerr_on_assert_failure) \ |
| std::cerr << #a << " " __FILE__ << "(" << __LINE__ << ")\n"; \ |
| Eigen::no_more_assert = true; \ |
| throw Eigen::eigen_assert_exception(); \ |
| } \ |
| else if (Eigen::internal::push_assert) \ |
| { \ |
| eigen_assert_list.push_back(std::string(EI_PP_MAKE_STRING(__FILE__) " (" EI_PP_MAKE_STRING(__LINE__) ") : " #a) ); \ |
| } |
| |
| #define VERIFY_RAISES_ASSERT(a) \ |
| { \ |
| Eigen::no_more_assert = false; \ |
| Eigen::eigen_assert_list.clear(); \ |
| Eigen::internal::push_assert = true; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| try { \ |
| a; \ |
| std::cerr << "One of the following asserts should have been triggered:\n"; \ |
| for (uint ai=0 ; ai<eigen_assert_list.size() ; ++ai) \ |
| std::cerr << " " << eigen_assert_list[ai] << "\n"; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } catch (Eigen::eigen_assert_exception) { \ |
| Eigen::internal::push_assert = false; VERIFY(true); \ |
| } \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| Eigen::internal::push_assert = false; \ |
| } |
| |
| #else // EIGEN_DEBUG_ASSERTS |
| // see bug 89. The copy_bool here is working around a bug in gcc <= 4.3 |
| #define eigen_assert(a) \ |
| if( (!Eigen::internal::copy_bool(a)) && (!no_more_assert) )\ |
| { \ |
| Eigen::no_more_assert = true; \ |
| if(report_on_cerr_on_assert_failure) \ |
| eigen_plain_assert(a); \ |
| else \ |
| throw Eigen::eigen_assert_exception(); \ |
| } |
| #define VERIFY_RAISES_ASSERT(a) { \ |
| Eigen::no_more_assert = false; \ |
| Eigen::report_on_cerr_on_assert_failure = false; \ |
| try { \ |
| a; \ |
| VERIFY(Eigen::should_raise_an_assert && # a); \ |
| } \ |
| catch (Eigen::eigen_assert_exception&) { VERIFY(true); } \ |
| Eigen::report_on_cerr_on_assert_failure = true; \ |
| } |
| |
| #endif // EIGEN_DEBUG_ASSERTS |
| |
| #define EIGEN_USE_CUSTOM_ASSERT |
| |
| #else // EIGEN_NO_ASSERTION_CHECKING |
| |
| #define VERIFY_RAISES_ASSERT(a) {} |
| |
| #endif // EIGEN_NO_ASSERTION_CHECKING |
| |
| |
| #define EIGEN_INTERNAL_DEBUGGING |
| #include <Eigen/QR> // required for createRandomPIMatrixOfRank |
| |
| static void verify_impl(bool condition, const char *testname, const char *file, int line, const char *condition_as_string) |
| { |
| if (!condition) |
| { |
| std::cerr << "Test " << testname << " failed in " << file << " (" << line << ")" \ |
| << std::endl << " " << condition_as_string << std::endl << std::endl; \ |
| abort(); |
| } |
| } |
| |
| #define VERIFY(a) ::verify_impl(a, g_test_stack.back().c_str(), __FILE__, __LINE__, EI_PP_MAKE_STRING(a)) |
| |
| #define VERIFY_IS_EQUAL(a, b) VERIFY(test_is_equal(a, b)) |
| #define VERIFY_IS_APPROX(a, b) VERIFY(test_isApprox(a, b)) |
| #define VERIFY_IS_NOT_APPROX(a, b) VERIFY(!test_isApprox(a, b)) |
| #define VERIFY_IS_MUCH_SMALLER_THAN(a, b) VERIFY(test_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_NOT_MUCH_SMALLER_THAN(a, b) VERIFY(!test_isMuchSmallerThan(a, b)) |
| #define VERIFY_IS_APPROX_OR_LESS_THAN(a, b) VERIFY(test_isApproxOrLessThan(a, b)) |
| #define VERIFY_IS_NOT_APPROX_OR_LESS_THAN(a, b) VERIFY(!test_isApproxOrLessThan(a, b)) |
| |
| #define VERIFY_IS_UNITARY(a) VERIFY(test_isUnitary(a)) |
| |
| #define CALL_SUBTEST(FUNC) do { \ |
| g_test_stack.push_back(EI_PP_MAKE_STRING(FUNC)); \ |
| FUNC; \ |
| g_test_stack.pop_back(); \ |
| } while (0) |
| |
| |
| namespace Eigen { |
| |
| template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); } |
| template<> inline float test_precision<float>() { return 1e-3f; } |
| template<> inline double test_precision<double>() { return 1e-6; } |
| template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); } |
| template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); } |
| template<> inline long double test_precision<long double>() { return 1e-6; } |
| |
| inline bool test_isApprox(const int& a, const int& b) |
| { return internal::isApprox(a, b, test_precision<int>()); } |
| inline bool test_isMuchSmallerThan(const int& a, const int& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<int>()); } |
| inline bool test_isApproxOrLessThan(const int& a, const int& b) |
| { return internal::isApproxOrLessThan(a, b, test_precision<int>()); } |
| |
| inline bool test_isApprox(const float& a, const float& b) |
| { return internal::isApprox(a, b, test_precision<float>()); } |
| inline bool test_isMuchSmallerThan(const float& a, const float& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<float>()); } |
| inline bool test_isApproxOrLessThan(const float& a, const float& b) |
| { return internal::isApproxOrLessThan(a, b, test_precision<float>()); } |
| inline bool test_isApprox(const double& a, const double& b) |
| { return internal::isApprox(a, b, test_precision<double>()); } |
| |
| inline bool test_isMuchSmallerThan(const double& a, const double& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<double>()); } |
| inline bool test_isApproxOrLessThan(const double& a, const double& b) |
| { return internal::isApproxOrLessThan(a, b, test_precision<double>()); } |
| |
| inline bool test_isApprox(const std::complex<float>& a, const std::complex<float>& b) |
| { return internal::isApprox(a, b, test_precision<std::complex<float> >()); } |
| inline bool test_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<float> >()); } |
| |
| inline bool test_isApprox(const std::complex<double>& a, const std::complex<double>& b) |
| { return internal::isApprox(a, b, test_precision<std::complex<double> >()); } |
| inline bool test_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<std::complex<double> >()); } |
| |
| inline bool test_isApprox(const long double& a, const long double& b) |
| { |
| bool ret = internal::isApprox(a, b, test_precision<long double>()); |
| if (!ret) std::cerr |
| << std::endl << " actual = " << a |
| << std::endl << " expected = " << b << std::endl << std::endl; |
| return ret; |
| } |
| |
| inline bool test_isMuchSmallerThan(const long double& a, const long double& b) |
| { return internal::isMuchSmallerThan(a, b, test_precision<long double>()); } |
| inline bool test_isApproxOrLessThan(const long double& a, const long double& b) |
| { return internal::isApproxOrLessThan(a, b, test_precision<long double>()); } |
| |
| template<typename Type1, typename Type2> |
| inline bool test_isApprox(const Type1& a, const Type2& b) |
| { |
| return a.isApprox(b, test_precision<typename Type1::Scalar>()); |
| } |
| |
| // The idea behind this function is to compare the two scalars a and b where |
| // the scalar ref is a hint about the expected order of magnitude of a and b. |
| // Therefore, if for some reason a and b are very small compared to ref, |
| // we won't issue a false negative. |
| // This test could be: abs(a-b) <= eps * ref |
| // However, it seems that simply comparing a+ref and b+ref is more sensitive to true error. |
| template<typename Scalar,typename ScalarRef> |
| inline bool test_isApproxWithRef(const Scalar& a, const Scalar& b, const ScalarRef& ref) |
| { |
| return test_isApprox(a+ref, b+ref); |
| } |
| |
| template<typename Derived1, typename Derived2> |
| inline bool test_isMuchSmallerThan(const MatrixBase<Derived1>& m1, |
| const MatrixBase<Derived2>& m2) |
| { |
| return m1.isMuchSmallerThan(m2, test_precision<typename internal::traits<Derived1>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_isMuchSmallerThan(const MatrixBase<Derived>& m, |
| const typename NumTraits<typename internal::traits<Derived>::Scalar>::Real& s) |
| { |
| return m.isMuchSmallerThan(s, test_precision<typename internal::traits<Derived>::Scalar>()); |
| } |
| |
| template<typename Derived> |
| inline bool test_isUnitary(const MatrixBase<Derived>& m) |
| { |
| return m.isUnitary(test_precision<typename internal::traits<Derived>::Scalar>()); |
| } |
| |
| template<typename T, typename U> |
| bool test_is_equal(const T& actual, const U& expected) |
| { |
| if (actual==expected) |
| return true; |
| // false: |
| std::cerr |
| << std::endl << " actual = " << actual |
| << std::endl << " expected = " << expected << std::endl << std::endl; |
| return false; |
| } |
| |
| /** Creates a random Partial Isometry matrix of given rank. |
| * |
| * A partial isometry is a matrix all of whose singular values are either 0 or 1. |
| * This is very useful to test rank-revealing algorithms. |
| */ |
| template<typename MatrixType> |
| void createRandomPIMatrixOfRank(typename MatrixType::Index desired_rank, typename MatrixType::Index rows, typename MatrixType::Index cols, MatrixType& m) |
| { |
| typedef typename internal::traits<MatrixType>::Index Index; |
| typedef typename internal::traits<MatrixType>::Scalar Scalar; |
| enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; |
| |
| typedef Matrix<Scalar, Dynamic, 1> VectorType; |
| typedef Matrix<Scalar, Rows, Rows> MatrixAType; |
| typedef Matrix<Scalar, Cols, Cols> MatrixBType; |
| |
| if(desired_rank == 0) |
| { |
| m.setZero(rows,cols); |
| return; |
| } |
| |
| if(desired_rank == 1) |
| { |
| // here we normalize the vectors to get a partial isometry |
| m = VectorType::Random(rows).normalized() * VectorType::Random(cols).normalized().transpose(); |
| return; |
| } |
| |
| MatrixAType a = MatrixAType::Random(rows,rows); |
| MatrixType d = MatrixType::Identity(rows,cols); |
| MatrixBType b = MatrixBType::Random(cols,cols); |
| |
| // set the diagonal such that only desired_rank non-zero entries reamain |
| const Index diag_size = (std::min)(d.rows(),d.cols()); |
| if(diag_size != desired_rank) |
| d.diagonal().segment(desired_rank, diag_size-desired_rank) = VectorType::Zero(diag_size-desired_rank); |
| |
| HouseholderQR<MatrixAType> qra(a); |
| HouseholderQR<MatrixBType> qrb(b); |
| m = qra.householderQ() * d * qrb.householderQ(); |
| } |
| |
| template<typename PermutationVectorType> |
| void randomPermutationVector(PermutationVectorType& v, typename PermutationVectorType::Index size) |
| { |
| typedef typename PermutationVectorType::Index Index; |
| typedef typename PermutationVectorType::Scalar Scalar; |
| v.resize(size); |
| for(Index i = 0; i < size; ++i) v(i) = Scalar(i); |
| if(size == 1) return; |
| for(Index n = 0; n < 3 * size; ++n) |
| { |
| Index i = internal::random<Index>(0, size-1); |
| Index j; |
| do j = internal::random<Index>(0, size-1); while(j==i); |
| std::swap(v(i), v(j)); |
| } |
| } |
| |
| } // end namespace Eigen |
| |
| template<typename T> struct GetDifferentType; |
| |
| template<> struct GetDifferentType<float> { typedef double type; }; |
| template<> struct GetDifferentType<double> { typedef float type; }; |
| template<typename T> struct GetDifferentType<std::complex<T> > |
| { typedef std::complex<typename GetDifferentType<T>::type> type; }; |
| |
| template<typename T> std::string type_name() { return "other"; } |
| template<> std::string type_name<float>() { return "float"; } |
| template<> std::string type_name<double>() { return "double"; } |
| template<> std::string type_name<int>() { return "int"; } |
| template<> std::string type_name<std::complex<float> >() { return "complex<float>"; } |
| template<> std::string type_name<std::complex<double> >() { return "complex<double>"; } |
| template<> std::string type_name<std::complex<int> >() { return "complex<int>"; } |
| |
| // forward declaration of the main test function |
| void EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); |
| |
| using namespace Eigen; |
| |
| void set_repeat_from_string(const char *str) |
| { |
| errno = 0; |
| g_repeat = int(strtoul(str, 0, 10)); |
| if(errno || g_repeat <= 0) |
| { |
| std::cout << "Invalid repeat value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_repeat = true; |
| } |
| |
| void set_seed_from_string(const char *str) |
| { |
| errno = 0; |
| g_seed = strtoul(str, 0, 10); |
| if(errno || g_seed == 0) |
| { |
| std::cout << "Invalid seed value " << str << std::endl; |
| exit(EXIT_FAILURE); |
| } |
| g_has_set_seed = true; |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| g_has_set_repeat = false; |
| g_has_set_seed = false; |
| bool need_help = false; |
| |
| for(int i = 1; i < argc; i++) |
| { |
| if(argv[i][0] == 'r') |
| { |
| if(g_has_set_repeat) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_repeat_from_string(argv[i]+1); |
| } |
| else if(argv[i][0] == 's') |
| { |
| if(g_has_set_seed) |
| { |
| std::cout << "Argument " << argv[i] << " conflicting with a former argument" << std::endl; |
| return 1; |
| } |
| set_seed_from_string(argv[i]+1); |
| } |
| else |
| { |
| need_help = true; |
| } |
| } |
| |
| if(need_help) |
| { |
| std::cout << "This test application takes the following optional arguments:" << std::endl; |
| std::cout << " rN Repeat each test N times (default: " << DEFAULT_REPEAT << ")" << std::endl; |
| std::cout << " sN Use N as seed for random numbers (default: based on current time)" << std::endl; |
| std::cout << std::endl; |
| std::cout << "If defined, the environment variables EIGEN_REPEAT and EIGEN_SEED" << std::endl; |
| std::cout << "will be used as default values for these parameters." << std::endl; |
| return 1; |
| } |
| |
| char *env_EIGEN_REPEAT = getenv("EIGEN_REPEAT"); |
| if(!g_has_set_repeat && env_EIGEN_REPEAT) |
| set_repeat_from_string(env_EIGEN_REPEAT); |
| char *env_EIGEN_SEED = getenv("EIGEN_SEED"); |
| if(!g_has_set_seed && env_EIGEN_SEED) |
| set_seed_from_string(env_EIGEN_SEED); |
| |
| if(!g_has_set_seed) g_seed = (unsigned int) time(NULL); |
| if(!g_has_set_repeat) g_repeat = DEFAULT_REPEAT; |
| |
| std::cout << "Initializing random number generator with seed " << g_seed << std::endl; |
| srand(g_seed); |
| std::cout << "Repeating each test " << g_repeat << " times" << std::endl; |
| |
| Eigen::g_test_stack.push_back(EI_PP_MAKE_STRING(EIGEN_TEST_FUNC)); |
| |
| EIGEN_CAT(test_,EIGEN_TEST_FUNC)(); |
| return 0; |
| } |