| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_GMRES_H |
| #define EIGEN_GMRES_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| /** |
| * Generalized Minimal Residual Algorithm based on the |
| * Arnoldi algorithm implemented with Householder reflections. |
| * |
| * Parameters: |
| * \param mat matrix of linear system of equations |
| * \param Rhs right hand side vector of linear system of equations |
| * \param x on input: initial guess, on output: solution |
| * \param precond preconditioner used |
| * \param iters on input: maximum number of iterations to perform |
| * on output: number of iterations performed |
| * \param restart number of iterations for a restart |
| * \param tol_error on input: residual tolerance |
| * on output: residuum achieved |
| * |
| * \sa IterativeMethods::bicgstab() |
| * |
| * |
| * For references, please see: |
| * |
| * Saad, Y. and Schultz, M. H. |
| * GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. |
| * SIAM J.Sci.Stat.Comp. 7, 1986, pp. 856 - 869. |
| * |
| * Saad, Y. |
| * Iterative Methods for Sparse Linear Systems. |
| * Society for Industrial and Applied Mathematics, Philadelphia, 2003. |
| * |
| * Walker, H. F. |
| * Implementations of the GMRES method. |
| * Comput.Phys.Comm. 53, 1989, pp. 311 - 320. |
| * |
| * Walker, H. F. |
| * Implementation of the GMRES Method using Householder Transformations. |
| * SIAM J.Sci.Stat.Comp. 9, 1988, pp. 152 - 163. |
| * |
| */ |
| template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner> |
| bool gmres(const MatrixType & mat, const Rhs & rhs, Dest & x, const Preconditioner & precond, |
| int &iters, const int &restart, typename Dest::RealScalar & tol_error) { |
| |
| using std::sqrt; |
| using std::abs; |
| |
| typedef typename Dest::RealScalar RealScalar; |
| typedef typename Dest::Scalar Scalar; |
| typedef Matrix < RealScalar, Dynamic, 1 > RealVectorType; |
| typedef Matrix < Scalar, Dynamic, 1 > VectorType; |
| typedef Matrix < Scalar, Dynamic, Dynamic > FMatrixType; |
| |
| RealScalar tol = tol_error; |
| const int maxIters = iters; |
| iters = 0; |
| |
| const int m = mat.rows(); |
| |
| VectorType p0 = rhs - mat*x; |
| VectorType r0 = precond.solve(p0); |
| // RealScalar r0_sqnorm = r0.squaredNorm(); |
| |
| VectorType w = VectorType::Zero(restart + 1); |
| |
| FMatrixType H = FMatrixType::Zero(m, restart + 1); |
| VectorType tau = VectorType::Zero(restart + 1); |
| std::vector < JacobiRotation < Scalar > > G(restart); |
| |
| // generate first Householder vector |
| VectorType e; |
| RealScalar beta; |
| r0.makeHouseholder(e, tau.coeffRef(0), beta); |
| w(0)=(Scalar) beta; |
| H.bottomLeftCorner(m - 1, 1) = e; |
| |
| for (int k = 1; k <= restart; ++k) { |
| |
| ++iters; |
| |
| VectorType v = VectorType::Unit(m, k - 1), workspace(m); |
| |
| // apply Householder reflections H_{1} ... H_{k-1} to v |
| for (int i = k - 1; i >= 0; --i) { |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| // apply matrix M to v: v = mat * v; |
| VectorType t=mat*v; |
| v=precond.solve(t); |
| |
| // apply Householder reflections H_{k-1} ... H_{1} to v |
| for (int i = 0; i < k; ++i) { |
| v.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| if (v.tail(m - k).norm() != 0.0) { |
| |
| if (k <= restart) { |
| |
| // generate new Householder vector |
| VectorType e(m - k - 1); |
| RealScalar beta; |
| v.tail(m - k).makeHouseholder(e, tau.coeffRef(k), beta); |
| H.col(k).tail(m - k - 1) = e; |
| |
| // apply Householder reflection H_{k} to v |
| v.tail(m - k).applyHouseholderOnTheLeft(H.col(k).tail(m - k - 1), tau.coeffRef(k), workspace.data()); |
| |
| } |
| } |
| |
| if (k > 1) { |
| for (int i = 0; i < k - 1; ++i) { |
| // apply old Givens rotations to v |
| v.applyOnTheLeft(i, i + 1, G[i].adjoint()); |
| } |
| } |
| |
| if (k<m && v(k) != (Scalar) 0) { |
| // determine next Givens rotation |
| G[k - 1].makeGivens(v(k - 1), v(k)); |
| |
| // apply Givens rotation to v and w |
| v.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| w.applyOnTheLeft(k - 1, k, G[k - 1].adjoint()); |
| |
| } |
| |
| // insert coefficients into upper matrix triangle |
| H.col(k - 1).head(k) = v.head(k); |
| |
| bool stop=(k==m || abs(w(k)) < tol || iters == maxIters); |
| |
| if (stop || k == restart) { |
| |
| // solve upper triangular system |
| VectorType y = w.head(k); |
| H.topLeftCorner(k, k).template triangularView < Eigen::Upper > ().solveInPlace(y); |
| |
| // use Horner-like scheme to calculate solution vector |
| VectorType x_new = y(k - 1) * VectorType::Unit(m, k - 1); |
| |
| // apply Householder reflection H_{k} to x_new |
| x_new.tail(m - k + 1).applyHouseholderOnTheLeft(H.col(k - 1).tail(m - k), tau.coeffRef(k - 1), workspace.data()); |
| |
| for (int i = k - 2; i >= 0; --i) { |
| x_new += y(i) * VectorType::Unit(m, i); |
| // apply Householder reflection H_{i} to x_new |
| x_new.tail(m - i).applyHouseholderOnTheLeft(H.col(i).tail(m - i - 1), tau.coeffRef(i), workspace.data()); |
| } |
| |
| x += x_new; |
| |
| if (stop) { |
| return true; |
| } else { |
| k=0; |
| |
| // reset data for a restart r0 = rhs - mat * x; |
| VectorType p0=mat*x; |
| VectorType p1=precond.solve(p0); |
| r0 = rhs - p1; |
| // r0_sqnorm = r0.squaredNorm(); |
| w = VectorType::Zero(restart + 1); |
| H = FMatrixType::Zero(m, restart + 1); |
| tau = VectorType::Zero(restart + 1); |
| |
| // generate first Householder vector |
| RealScalar beta; |
| r0.makeHouseholder(e, tau.coeffRef(0), beta); |
| w(0)=(Scalar) beta; |
| H.bottomLeftCorner(m - 1, 1) = e; |
| |
| } |
| |
| } |
| |
| |
| |
| } |
| |
| return false; |
| |
| } |
| |
| } |
| |
| template< typename _MatrixType, |
| typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> > |
| class GMRES; |
| |
| namespace internal { |
| |
| template< typename _MatrixType, typename _Preconditioner> |
| struct traits<GMRES<_MatrixType,_Preconditioner> > |
| { |
| typedef _MatrixType MatrixType; |
| typedef _Preconditioner Preconditioner; |
| }; |
| |
| } |
| |
| /** \ingroup IterativeLinearSolvers_Module |
| * \brief A GMRES solver for sparse square problems |
| * |
| * This class allows to solve for A.x = b sparse linear problems using a generalized minimal |
| * residual method. The vectors x and b can be either dense or sparse. |
| * |
| * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix. |
| * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner |
| * |
| * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations() |
| * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations |
| * and NumTraits<Scalar>::epsilon() for the tolerance. |
| * |
| * This class can be used as the direct solver classes. Here is a typical usage example: |
| * \code |
| * int n = 10000; |
| * VectorXd x(n), b(n); |
| * SparseMatrix<double> A(n,n); |
| * // fill A and b |
| * GMRES<SparseMatrix<double> > solver(A); |
| * x = solver.solve(b); |
| * std::cout << "#iterations: " << solver.iterations() << std::endl; |
| * std::cout << "estimated error: " << solver.error() << std::endl; |
| * // update b, and solve again |
| * x = solver.solve(b); |
| * \endcode |
| * |
| * By default the iterations start with x=0 as an initial guess of the solution. |
| * One can control the start using the solveWithGuess() method. Here is a step by |
| * step execution example starting with a random guess and printing the evolution |
| * of the estimated error: |
| * * \code |
| * x = VectorXd::Random(n); |
| * solver.setMaxIterations(1); |
| * int i = 0; |
| * do { |
| * x = solver.solveWithGuess(b,x); |
| * std::cout << i << " : " << solver.error() << std::endl; |
| * ++i; |
| * } while (solver.info()!=Success && i<100); |
| * \endcode |
| * Note that such a step by step excution is slightly slower. |
| * |
| * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner |
| */ |
| template< typename _MatrixType, typename _Preconditioner> |
| class GMRES : public IterativeSolverBase<GMRES<_MatrixType,_Preconditioner> > |
| { |
| typedef IterativeSolverBase<GMRES> Base; |
| using Base::mp_matrix; |
| using Base::m_error; |
| using Base::m_iterations; |
| using Base::m_info; |
| using Base::m_isInitialized; |
| |
| private: |
| int m_restart; |
| |
| public: |
| typedef _MatrixType MatrixType; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::RealScalar RealScalar; |
| typedef _Preconditioner Preconditioner; |
| |
| public: |
| |
| /** Default constructor. */ |
| GMRES() : Base(), m_restart(30) {} |
| |
| /** Initialize the solver with matrix \a A for further \c Ax=b solving. |
| * |
| * This constructor is a shortcut for the default constructor followed |
| * by a call to compute(). |
| * |
| * \warning this class stores a reference to the matrix A as well as some |
| * precomputed values that depend on it. Therefore, if \a A is changed |
| * this class becomes invalid. Call compute() to update it with the new |
| * matrix A, or modify a copy of A. |
| */ |
| GMRES(const MatrixType& A) : Base(A), m_restart(30) {} |
| |
| ~GMRES() {} |
| |
| /** Get the number of iterations after that a restart is performed. |
| */ |
| int get_restart() { return m_restart; } |
| |
| /** Set the number of iterations after that a restart is performed. |
| * \param restart number of iterations for a restarti, default is 30. |
| */ |
| void set_restart(const int restart) { m_restart=restart; } |
| |
| /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A |
| * \a x0 as an initial solution. |
| * |
| * \sa compute() |
| */ |
| template<typename Rhs,typename Guess> |
| inline const internal::solve_retval_with_guess<GMRES, Rhs, Guess> |
| solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const |
| { |
| eigen_assert(m_isInitialized && "GMRES is not initialized."); |
| eigen_assert(Base::rows()==b.rows() |
| && "GMRES::solve(): invalid number of rows of the right hand side matrix b"); |
| return internal::solve_retval_with_guess |
| <GMRES, Rhs, Guess>(*this, b.derived(), x0); |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solveWithGuess(const Rhs& b, Dest& x) const |
| { |
| bool failed = false; |
| for(int j=0; j<b.cols(); ++j) |
| { |
| m_iterations = Base::maxIterations(); |
| m_error = Base::m_tolerance; |
| |
| typename Dest::ColXpr xj(x,j); |
| if(!internal::gmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner, m_iterations, m_restart, m_error)) |
| failed = true; |
| } |
| m_info = failed ? NumericalIssue |
| : m_error <= Base::m_tolerance ? Success |
| : NoConvergence; |
| m_isInitialized = true; |
| } |
| |
| /** \internal */ |
| template<typename Rhs,typename Dest> |
| void _solve(const Rhs& b, Dest& x) const |
| { |
| x.setZero(); |
| _solveWithGuess(b,x); |
| } |
| |
| protected: |
| |
| }; |
| |
| |
| namespace internal { |
| |
| template<typename _MatrixType, typename _Preconditioner, typename Rhs> |
| struct solve_retval<GMRES<_MatrixType, _Preconditioner>, Rhs> |
| : solve_retval_base<GMRES<_MatrixType, _Preconditioner>, Rhs> |
| { |
| typedef GMRES<_MatrixType, _Preconditioner> Dec; |
| EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| |
| template<typename Dest> void evalTo(Dest& dst) const |
| { |
| dec()._solve(rhs(),dst); |
| } |
| }; |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_GMRES_H |