| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| #ifdef HAS_GSL |
| #include "gsl_helper.h" |
| #endif |
| |
| template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h) |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| RealScalar largerEps = 10*test_precision<RealScalar>(); |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| |
| MatrixType b = MatrixType::Random(rows,cols); |
| MatrixType b1 = MatrixType::Random(rows,cols); |
| MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1; |
| |
| SelfAdjointEigenSolver<MatrixType> eiSymm(symmA); |
| // generalized eigen pb |
| SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB); |
| |
| #ifdef HAS_GSL |
| if (ei_is_same_type<RealScalar,double>::ret) |
| { |
| typedef GslTraits<Scalar> Gsl; |
| typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0; |
| typename GslTraits<RealScalar>::Vector gEval=0; |
| RealVectorType _eval; |
| MatrixType _evec; |
| convert<MatrixType>(symmA, gSymmA); |
| convert<MatrixType>(symmB, gSymmB); |
| convert<MatrixType>(symmA, gEvec); |
| gEval = GslTraits<RealScalar>::createVector(rows); |
| |
| Gsl::eigen_symm(gSymmA, gEval, gEvec); |
| convert(gEval, _eval); |
| convert(gEvec, _evec); |
| |
| // test gsl itself ! |
| VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps)); |
| |
| // compare with eigen |
| VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues()); |
| VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs()); |
| |
| // generalized pb |
| Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec); |
| convert(gEval, _eval); |
| convert(gEvec, _evec); |
| // test GSL itself: |
| VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps)); |
| |
| // compare with eigen |
| MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse(); |
| VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues()); |
| VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs()); |
| |
| Gsl::free(gSymmA); |
| Gsl::free(gSymmB); |
| GslTraits<RealScalar>::free(gEval); |
| Gsl::free(gEvec); |
| } |
| #endif |
| |
| VERIFY((symmA * eiSymm.eigenvectors()).isApprox( |
| eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps)); |
| |
| // generalized eigen problem Ax = lBx |
| VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox( |
| symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps)); |
| |
| MatrixType sqrtSymmA = eiSymm.operatorSqrt(); |
| VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA); |
| VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt()); |
| } |
| |
| template<typename MatrixType> void eigensolver(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| EigenSolver.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; |
| typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; |
| typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; |
| |
| // RealScalar largerEps = 10*test_precision<RealScalar>(); |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| MatrixType a1 = MatrixType::Random(rows,cols); |
| MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1; |
| |
| EigenSolver<MatrixType> ei0(symmA); |
| VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), |
| (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); |
| |
| EigenSolver<MatrixType> ei1(a); |
| VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); |
| VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), |
| ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
| |
| } |
| |
| void test_eigen2_eigensolver() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| // very important to test a 3x3 matrix since we provide a special path for it |
| CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) ); |
| CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) ); |
| CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) ); |
| CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) ); |
| CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) ); |
| |
| CALL_SUBTEST_6( eigensolver(Matrix4f()) ); |
| CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) ); |
| } |
| } |
| |