| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/QR> |
| |
| template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane) |
| { |
| /* this test covers the following files: |
| Hyperplane.h |
| */ |
| |
| const int dim = _plane.dim(); |
| typedef typename HyperplaneType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::Real RealScalar; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType; |
| typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, |
| HyperplaneType::AmbientDimAtCompileTime> MatrixType; |
| |
| VectorType p0 = VectorType::Random(dim); |
| VectorType p1 = VectorType::Random(dim); |
| |
| VectorType n0 = VectorType::Random(dim).normalized(); |
| VectorType n1 = VectorType::Random(dim).normalized(); |
| |
| HyperplaneType pl0(n0, p0); |
| HyperplaneType pl1(n1, p1); |
| HyperplaneType pl2 = pl1; |
| |
| Scalar s0 = ei_random<Scalar>(); |
| Scalar s1 = ei_random<Scalar>(); |
| |
| VERIFY_IS_APPROX( n1.eigen2_dot(n1), Scalar(1) ); |
| |
| VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) ); |
| VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0 ); |
| VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) ); |
| VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) ); |
| |
| // transform |
| if (!NumTraits<Scalar>::IsComplex) |
| { |
| MatrixType rot = MatrixType::Random(dim,dim).qr().matrixQ(); |
| Scaling<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random()); |
| Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random()); |
| |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation) |
| .absDistance((rot*scaling*translation) * p1), Scalar(1) ); |
| pl2 = pl1; |
| VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry) |
| .absDistance((rot*translation) * p1), Scalar(1) ); |
| } |
| |
| // casting |
| const int Dim = HyperplaneType::AmbientDimAtCompileTime; |
| typedef typename GetDifferentType<Scalar>::type OtherScalar; |
| Hyperplane<OtherScalar,Dim> hp1f = pl1.template cast<OtherScalar>(); |
| VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1); |
| Hyperplane<Scalar,Dim> hp1d = pl1.template cast<Scalar>(); |
| VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1); |
| } |
| |
| template<typename Scalar> void lines() |
| { |
| typedef Hyperplane<Scalar, 2> HLine; |
| typedef ParametrizedLine<Scalar, 2> PLine; |
| typedef Matrix<Scalar,2,1> Vector; |
| typedef Matrix<Scalar,3,1> CoeffsType; |
| |
| for(int i = 0; i < 10; i++) |
| { |
| Vector center = Vector::Random(); |
| Vector u = Vector::Random(); |
| Vector v = Vector::Random(); |
| Scalar a = ei_random<Scalar>(); |
| while (ei_abs(a-1) < 1e-4) a = ei_random<Scalar>(); |
| while (u.norm() < 1e-4) u = Vector::Random(); |
| while (v.norm() < 1e-4) v = Vector::Random(); |
| |
| HLine line_u = HLine::Through(center + u, center + a*u); |
| HLine line_v = HLine::Through(center + v, center + a*v); |
| |
| // the line equations should be normalized so that a^2+b^2=1 |
| VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1)); |
| VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1)); |
| |
| Vector result = line_u.intersection(line_v); |
| |
| // the lines should intersect at the point we called "center" |
| VERIFY_IS_APPROX(result, center); |
| |
| // check conversions between two types of lines |
| PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable |
| CoeffsType converted_coeffs(HLine(pl).coeffs()); |
| converted_coeffs *= line_u.coeffs()(0)/converted_coeffs(0); |
| VERIFY(line_u.coeffs().isApprox(converted_coeffs)); |
| } |
| } |
| |
| void test_eigen2_hyperplane() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) ); |
| CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) ); |
| CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) ); |
| CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) ); |
| CALL_SUBTEST_5( lines<float>() ); |
| CALL_SUBTEST_6( lines<double>() ); |
| } |
| } |