| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/LU> |
| |
| template<typename Derived> |
| void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m) |
| { |
| typedef typename Derived::RealScalar RealScalar; |
| for(int a = 0; a < 3*(m.rows()+m.cols()); a++) |
| { |
| RealScalar d = Eigen::ei_random<RealScalar>(-1,1); |
| int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number |
| int j; |
| do { |
| j = Eigen::ei_random<int>(0,m.rows()-1); |
| } while (i==j); // j is another one (must be different) |
| m.row(i) += d * m.row(j); |
| |
| i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number |
| do { |
| j = Eigen::ei_random<int>(0,m.cols()-1); |
| } while (i==j); // j is another one (must be different) |
| m.col(i) += d * m.col(j); |
| } |
| } |
| |
| template<typename MatrixType> void lu_non_invertible() |
| { |
| /* this test covers the following files: |
| LU.h |
| */ |
| // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function |
| int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200); |
| int rank = ei_random<int>(1, std::min(rows, cols)-1); |
| |
| MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1); |
| m1 = MatrixType::Random(rows,cols); |
| if(rows <= cols) |
| for(int i = rank; i < rows; i++) m1.row(i).setZero(); |
| else |
| for(int i = rank; i < cols; i++) m1.col(i).setZero(); |
| doSomeRankPreservingOperations(m1); |
| |
| LU<MatrixType> lu(m1); |
| typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel(); |
| typename LU<MatrixType>::ImageResultType m1image = lu.image(); |
| |
| VERIFY(rank == lu.rank()); |
| VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); |
| VERIFY(!lu.isInjective()); |
| VERIFY(!lu.isInvertible()); |
| VERIFY(lu.isSurjective() == (lu.rank() == rows)); |
| VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); |
| VERIFY(m1image.lu().rank() == rank); |
| MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols()); |
| sidebyside << m1, m1image; |
| VERIFY(sidebyside.lu().rank() == rank); |
| m2 = MatrixType::Random(cols,cols2); |
| m3 = m1*m2; |
| m2 = MatrixType::Random(cols,cols2); |
| lu.solve(m3, &m2); |
| VERIFY_IS_APPROX(m3, m1*m2); |
| /* solve now always returns true |
| m3 = MatrixType::Random(rows,cols2); |
| VERIFY(!lu.solve(m3, &m2)); |
| */ |
| } |
| |
| template<typename MatrixType> void lu_invertible() |
| { |
| /* this test covers the following files: |
| LU.h |
| */ |
| typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| int size = ei_random<int>(10,200); |
| |
| MatrixType m1(size, size), m2(size, size), m3(size, size); |
| m1 = MatrixType::Random(size,size); |
| |
| if (ei_is_same_type<RealScalar,float>::ret) |
| { |
| // let's build a matrix more stable to inverse |
| MatrixType a = MatrixType::Random(size,size*2); |
| m1 += a * a.adjoint(); |
| } |
| |
| LU<MatrixType> lu(m1); |
| VERIFY(0 == lu.dimensionOfKernel()); |
| VERIFY(size == lu.rank()); |
| VERIFY(lu.isInjective()); |
| VERIFY(lu.isSurjective()); |
| VERIFY(lu.isInvertible()); |
| VERIFY(lu.image().lu().isInvertible()); |
| m3 = MatrixType::Random(size,size); |
| lu.solve(m3, &m2); |
| VERIFY_IS_APPROX(m3, m1*m2); |
| VERIFY_IS_APPROX(m2, lu.inverse()*m3); |
| m3 = MatrixType::Random(size,size); |
| VERIFY(lu.solve(m3, &m2)); |
| } |
| |
| void test_eigen2_lu() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() ); |
| CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() ); |
| CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() ); |
| CALL_SUBTEST_1( lu_invertible<MatrixXf>() ); |
| CALL_SUBTEST_2( lu_invertible<MatrixXd>() ); |
| CALL_SUBTEST_3( lu_invertible<MatrixXcf>() ); |
| CALL_SUBTEST_4( lu_invertible<MatrixXcd>() ); |
| } |
| } |