| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| |
| template<typename MatrixType> void matrixVisitor(const MatrixType& p) |
| { |
| typedef typename MatrixType::Scalar Scalar; |
| |
| int rows = p.rows(); |
| int cols = p.cols(); |
| |
| // construct a random matrix where all coefficients are different |
| MatrixType m; |
| m = MatrixType::Random(rows, cols); |
| for(int i = 0; i < m.size(); i++) |
| for(int i2 = 0; i2 < i; i2++) |
| while(m(i) == m(i2)) // yes, == |
| m(i) = ei_random<Scalar>(); |
| |
| Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| int minrow=0,mincol=0,maxrow=0,maxcol=0; |
| for(int j = 0; j < cols; j++) |
| for(int i = 0; i < rows; i++) |
| { |
| if(m(i,j) < minc) |
| { |
| minc = m(i,j); |
| minrow = i; |
| mincol = j; |
| } |
| if(m(i,j) > maxc) |
| { |
| maxc = m(i,j); |
| maxrow = i; |
| maxcol = j; |
| } |
| } |
| int eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); |
| eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); |
| VERIFY(minrow == eigen_minrow); |
| VERIFY(maxrow == eigen_maxrow); |
| VERIFY(mincol == eigen_mincol); |
| VERIFY(maxcol == eigen_maxcol); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, m.minCoeff()); |
| VERIFY_IS_APPROX(maxc, m.maxCoeff()); |
| } |
| |
| template<typename VectorType> void vectorVisitor(const VectorType& w) |
| { |
| typedef typename VectorType::Scalar Scalar; |
| |
| int size = w.size(); |
| |
| // construct a random vector where all coefficients are different |
| VectorType v; |
| v = VectorType::Random(size); |
| for(int i = 0; i < size; i++) |
| for(int i2 = 0; i2 < i; i2++) |
| while(v(i) == v(i2)) // yes, == |
| v(i) = ei_random<Scalar>(); |
| |
| Scalar minc = Scalar(1000), maxc = Scalar(-1000); |
| int minidx=0,maxidx=0; |
| for(int i = 0; i < size; i++) |
| { |
| if(v(i) < minc) |
| { |
| minc = v(i); |
| minidx = i; |
| } |
| if(v(i) > maxc) |
| { |
| maxc = v(i); |
| maxidx = i; |
| } |
| } |
| int eigen_minidx, eigen_maxidx; |
| Scalar eigen_minc, eigen_maxc; |
| eigen_minc = v.minCoeff(&eigen_minidx); |
| eigen_maxc = v.maxCoeff(&eigen_maxidx); |
| VERIFY(minidx == eigen_minidx); |
| VERIFY(maxidx == eigen_maxidx); |
| VERIFY_IS_APPROX(minc, eigen_minc); |
| VERIFY_IS_APPROX(maxc, eigen_maxc); |
| VERIFY_IS_APPROX(minc, v.minCoeff()); |
| VERIFY_IS_APPROX(maxc, v.maxCoeff()); |
| } |
| |
| void test_eigen2_visitor() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); |
| CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); |
| CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); |
| CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); |
| CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); |
| CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); |
| } |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); |
| CALL_SUBTEST_4( vectorVisitor(VectorXd(10)) ); |
| CALL_SUBTEST_4( vectorVisitor(RowVectorXd(10)) ); |
| CALL_SUBTEST_8( vectorVisitor(VectorXf(33)) ); |
| } |
| } |