| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template<typename Derived1, typename Derived2> |
| bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision()) |
| { |
| return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon |
| * (std::max)(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff())); |
| } |
| |
| template<typename MatrixType> void product(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| Identity.h Product.h |
| */ |
| typedef typename MatrixType::Index Index; |
| typedef typename MatrixType::Scalar Scalar; |
| typedef typename NumTraits<Scalar>::NonInteger NonInteger; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> RowVectorType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> ColVectorType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RowSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> ColSquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime, |
| MatrixType::Flags&RowMajorBit?ColMajor:RowMajor> OtherMajorMatrixType; |
| |
| Index rows = m.rows(); |
| Index cols = m.cols(); |
| |
| // this test relies a lot on Random.h, and there's not much more that we can do |
| // to test it, hence I consider that we will have tested Random.h |
| MatrixType m1 = MatrixType::Random(rows, cols), |
| m2 = MatrixType::Random(rows, cols), |
| m3(rows, cols); |
| RowSquareMatrixType |
| identity = RowSquareMatrixType::Identity(rows, rows), |
| square = RowSquareMatrixType::Random(rows, rows), |
| res = RowSquareMatrixType::Random(rows, rows); |
| ColSquareMatrixType |
| square2 = ColSquareMatrixType::Random(cols, cols), |
| res2 = ColSquareMatrixType::Random(cols, cols); |
| RowVectorType v1 = RowVectorType::Random(rows); |
| ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); |
| OtherMajorMatrixType tm1 = m1; |
| |
| Scalar s1 = internal::random<Scalar>(); |
| |
| Index r = internal::random<Index>(0, rows-1), |
| c = internal::random<Index>(0, cols-1), |
| c2 = internal::random<Index>(0, cols-1); |
| |
| // begin testing Product.h: only associativity for now |
| // (we use Transpose.h but this doesn't count as a test for it) |
| VERIFY_IS_APPROX((m1*m1.transpose())*m2, m1*(m1.transpose()*m2)); |
| m3 = m1; |
| m3 *= m1.transpose() * m2; |
| VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); |
| VERIFY_IS_APPROX(m3, m1 * (m1.transpose()*m2)); |
| |
| // continue testing Product.h: distributivity |
| VERIFY_IS_APPROX(square*(m1 + m2), square*m1+square*m2); |
| VERIFY_IS_APPROX(square*(m1 - m2), square*m1-square*m2); |
| |
| // continue testing Product.h: compatibility with ScalarMultiple.h |
| VERIFY_IS_APPROX(s1*(square*m1), (s1*square)*m1); |
| VERIFY_IS_APPROX(s1*(square*m1), square*(m1*s1)); |
| |
| // test Product.h together with Identity.h |
| VERIFY_IS_APPROX(v1, identity*v1); |
| VERIFY_IS_APPROX(v1.transpose(), v1.transpose() * identity); |
| // again, test operator() to check const-qualification |
| VERIFY_IS_APPROX(MatrixType::Identity(rows, cols)(r,c), static_cast<Scalar>(r==c)); |
| |
| if (rows!=cols) |
| VERIFY_RAISES_ASSERT(m3 = m1*m1); |
| |
| // test the previous tests were not screwed up because operator* returns 0 |
| // (we use the more accurate default epsilon) |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(m1.transpose()*m2,m2.transpose()*m1)); |
| } |
| |
| // test optimized operator+= path |
| res = square; |
| res.noalias() += m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square + m1 * m2.transpose()); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(res,square + m2 * m1.transpose())); |
| } |
| vcres = vc2; |
| vcres.noalias() += m1.transpose() * v1; |
| VERIFY_IS_APPROX(vcres, vc2 + m1.transpose() * v1); |
| |
| // test optimized operator-= path |
| res = square; |
| res.noalias() -= m1 * m2.transpose(); |
| VERIFY_IS_APPROX(res, square - (m1 * m2.transpose())); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(res,square - m2 * m1.transpose())); |
| } |
| vcres = vc2; |
| vcres.noalias() -= m1.transpose() * v1; |
| VERIFY_IS_APPROX(vcres, vc2 - m1.transpose() * v1); |
| |
| tm1 = m1; |
| VERIFY_IS_APPROX(tm1.transpose() * v1, m1.transpose() * v1); |
| VERIFY_IS_APPROX(v1.transpose() * tm1, v1.transpose() * m1); |
| |
| // test submatrix and matrix/vector product |
| for (int i=0; i<rows; ++i) |
| res.row(i) = m1.row(i) * m2.transpose(); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| // the other way round: |
| for (int i=0; i<rows; ++i) |
| res.col(i) = m1 * m2.transpose().col(i); |
| VERIFY_IS_APPROX(res, m1 * m2.transpose()); |
| |
| res2 = square2; |
| res2.noalias() += m1.transpose() * m2; |
| VERIFY_IS_APPROX(res2, square2 + m1.transpose() * m2); |
| if (!NumTraits<Scalar>::IsInteger && (std::min)(rows,cols)>1) |
| { |
| VERIFY(areNotApprox(res2,square2 + m2.transpose() * m1)); |
| } |
| |
| VERIFY_IS_APPROX(res.col(r).noalias() = square.adjoint() * square.col(r), (square.adjoint() * square.col(r)).eval()); |
| VERIFY_IS_APPROX(res.col(r).noalias() = square * square.col(r), (square * square.col(r)).eval()); |
| |
| // inner product |
| Scalar x = square2.row(c) * square2.col(c2); |
| VERIFY_IS_APPROX(x, square2.row(c).transpose().cwiseProduct(square2.col(c2)).sum()); |
| } |