| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "sparse.h" |
| #include <Eigen/SparseCore> |
| |
| template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs> |
| void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| |
| DenseRhs refX = dA.lu().solve(db); |
| |
| Rhs x(b.rows(), b.cols()); |
| Rhs oldb = b; |
| |
| solver.compute(A); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n"; |
| exit(0); |
| return; |
| } |
| x = solver.solve(b); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: solving failed\n"; |
| return; |
| } |
| VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); |
| |
| VERIFY(x.isApprox(refX,test_precision<Scalar>())); |
| |
| x.setZero(); |
| // test the analyze/factorize API |
| solver.analyzePattern(A); |
| solver.factorize(A); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n"; |
| exit(0); |
| return; |
| } |
| x = solver.solve(b); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: solving failed\n"; |
| return; |
| } |
| VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); |
| |
| VERIFY(x.isApprox(refX,test_precision<Scalar>())); |
| |
| // test Block as the result and rhs: |
| { |
| DenseRhs x(db.rows(), db.cols()); |
| DenseRhs b(db), oldb(db); |
| x.setZero(); |
| x.block(0,0,x.rows(),x.cols()) = solver.solve(b.block(0,0,b.rows(),b.cols())); |
| VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); |
| VERIFY(x.isApprox(refX,test_precision<Scalar>())); |
| } |
| } |
| |
| template<typename Solver, typename Rhs> |
| void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef typename Mat::RealScalar RealScalar; |
| |
| Rhs x(b.rows(), b.cols()); |
| |
| solver.compute(A); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n"; |
| exit(0); |
| return; |
| } |
| x = solver.solve(b); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: solving failed\n"; |
| return; |
| } |
| |
| RealScalar res_error; |
| // Compute the norm of the relative error |
| if(refX.size() != 0) |
| res_error = (refX - x).norm()/refX.norm(); |
| else |
| { |
| // Compute the relative residual norm |
| res_error = (b - A * x).norm()/b.norm(); |
| } |
| if (res_error > test_precision<Scalar>() ){ |
| std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) |
| << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl; |
| abort(); |
| } |
| |
| } |
| template<typename Solver, typename DenseMat> |
| void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& A, const DenseMat& dA) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef typename Mat::RealScalar RealScalar; |
| |
| solver.compute(A); |
| if (solver.info() != Success) |
| { |
| std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n"; |
| return; |
| } |
| |
| Scalar refDet = dA.determinant(); |
| VERIFY_IS_APPROX(refDet,solver.determinant()); |
| } |
| |
| |
| template<typename Solver, typename DenseMat> |
| int generate_sparse_spd_problem(Solver& , typename Solver::MatrixType& A, typename Solver::MatrixType& halfA, DenseMat& dA, int maxSize = 300) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| |
| int size = internal::random<int>(1,maxSize); |
| double density = (std::max)(8./(size*size), 0.01); |
| |
| Mat M(size, size); |
| DenseMatrix dM(size, size); |
| |
| initSparse<Scalar>(density, dM, M, ForceNonZeroDiag); |
| |
| A = M * M.adjoint(); |
| dA = dM * dM.adjoint(); |
| |
| halfA.resize(size,size); |
| halfA.template selfadjointView<Solver::UpLo>().rankUpdate(M); |
| |
| return size; |
| } |
| |
| |
| #ifdef TEST_REAL_CASES |
| template<typename Scalar> |
| inline std::string get_matrixfolder() |
| { |
| std::string mat_folder = TEST_REAL_CASES; |
| if( internal::is_same<Scalar, std::complex<float> >::value || internal::is_same<Scalar, std::complex<double> >::value ) |
| mat_folder = mat_folder + static_cast<string>("/complex/"); |
| else |
| mat_folder = mat_folder + static_cast<string>("/real/"); |
| return mat_folder; |
| } |
| #endif |
| |
| template<typename Solver> void check_sparse_spd_solving(Solver& solver) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef typename Mat::Index Index; |
| typedef SparseMatrix<Scalar,ColMajor> SpMat; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| // generate the problem |
| Mat A, halfA; |
| DenseMatrix dA; |
| int size = generate_sparse_spd_problem(solver, A, halfA, dA); |
| |
| // generate the right hand sides |
| int rhsCols = internal::random<int>(1,16); |
| double density = (std::max)(8./(size*rhsCols), 0.1); |
| SpMat B(size,rhsCols); |
| DenseVector b = DenseVector::Random(size); |
| DenseMatrix dB(size,rhsCols); |
| initSparse<Scalar>(density, dB, B, ForceNonZeroDiag); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| check_sparse_solving(solver, A, b, dA, b); |
| check_sparse_solving(solver, halfA, b, dA, b); |
| check_sparse_solving(solver, A, dB, dA, dB); |
| check_sparse_solving(solver, halfA, dB, dA, dB); |
| check_sparse_solving(solver, A, B, dA, dB); |
| check_sparse_solving(solver, halfA, B, dA, dB); |
| } |
| |
| // First, get the folder |
| #ifdef TEST_REAL_CASES |
| if (internal::is_same<Scalar, float>::value |
| || internal::is_same<Scalar, std::complex<float> >::value) |
| return ; |
| |
| std::string mat_folder = get_matrixfolder<Scalar>(); |
| MatrixMarketIterator<Scalar> it(mat_folder); |
| for (; it; ++it) |
| { |
| if (it.sym() == SPD){ |
| Mat halfA; |
| PermutationMatrix<Dynamic, Dynamic, Index> pnull; |
| halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull); |
| |
| std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n"; |
| check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX()); |
| check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX()); |
| } |
| } |
| #endif |
| } |
| |
| template<typename Solver> void check_sparse_spd_determinant(Solver& solver) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| |
| // generate the problem |
| Mat A, halfA; |
| DenseMatrix dA; |
| generate_sparse_spd_problem(solver, A, halfA, dA, 30); |
| |
| for (int i = 0; i < g_repeat; i++) { |
| check_sparse_determinant(solver, A, dA); |
| check_sparse_determinant(solver, halfA, dA ); |
| } |
| } |
| |
| template<typename Solver, typename DenseMat> |
| int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| |
| int size = internal::random<int>(1,maxSize); |
| double density = (std::max)(8./(size*size), 0.01); |
| |
| A.resize(size,size); |
| dA.resize(size,size); |
| |
| initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); |
| |
| return size; |
| } |
| |
| template<typename Solver> void check_sparse_square_solving(Solver& solver) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| int rhsCols = internal::random<int>(1,16); |
| |
| Mat A; |
| DenseMatrix dA; |
| int size = generate_sparse_square_problem(solver, A, dA); |
| |
| DenseVector b = DenseVector::Random(size); |
| DenseMatrix dB = DenseMatrix::Random(size,rhsCols); |
| A.makeCompressed(); |
| for (int i = 0; i < g_repeat; i++) { |
| check_sparse_solving(solver, A, b, dA, b); |
| check_sparse_solving(solver, A, dB, dA, dB); |
| } |
| |
| // First, get the folder |
| #ifdef TEST_REAL_CASES |
| if (internal::is_same<Scalar, float>::value |
| || internal::is_same<Scalar, std::complex<float> >::value) |
| return ; |
| |
| std::string mat_folder = get_matrixfolder<Scalar>(); |
| MatrixMarketIterator<Scalar> it(mat_folder); |
| for (; it; ++it) |
| { |
| std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n"; |
| check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX()); |
| } |
| #endif |
| |
| } |
| |
| template<typename Solver> void check_sparse_square_determinant(Solver& solver) |
| { |
| typedef typename Solver::MatrixType Mat; |
| typedef typename Mat::Scalar Scalar; |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| |
| // generate the problem |
| Mat A; |
| DenseMatrix dA; |
| generate_sparse_square_problem(solver, A, dA, 30); |
| A.makeCompressed(); |
| for (int i = 0; i < g_repeat; i++) { |
| check_sparse_determinant(solver, A, dA); |
| } |
| } |