| /* Functions to compute MD5 message digest of files or memory blocks. |
| according to the definition of MD5 in RFC 1321 from April 1992. |
| Copyright (C) 1995,1996,1997,1999,2000,2001,2005 Red Hat, Inc. |
| This file is part of Red Hat elfutils. |
| Written by Ulrich Drepper <drepper@redhat.com>, 1995. |
| |
| Red Hat elfutils is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by the |
| Free Software Foundation; version 2 of the License. |
| |
| Red Hat elfutils is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License along |
| with Red Hat elfutils; if not, write to the Free Software Foundation, |
| Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA. |
| |
| Red Hat elfutils is an included package of the Open Invention Network. |
| An included package of the Open Invention Network is a package for which |
| Open Invention Network licensees cross-license their patents. No patent |
| license is granted, either expressly or impliedly, by designation as an |
| included package. Should you wish to participate in the Open Invention |
| Network licensing program, please visit www.openinventionnetwork.com |
| <http://www.openinventionnetwork.com>. */ |
| |
| #ifdef HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #include <endian.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include "md5.h" |
| |
| #if __BYTE_ORDER == __BIG_ENDIAN |
| # define SWAP(n) \ |
| (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) |
| #else |
| # define SWAP(n) (n) |
| #endif |
| |
| |
| /* This array contains the bytes used to pad the buffer to the next |
| 64-byte boundary. (RFC 1321, 3.1: Step 1) */ |
| static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; |
| |
| |
| /* Initialize structure containing state of computation. |
| (RFC 1321, 3.3: Step 3) */ |
| void |
| md5_init_ctx (ctx) |
| struct md5_ctx *ctx; |
| { |
| ctx->A = 0x67452301; |
| ctx->B = 0xefcdab89; |
| ctx->C = 0x98badcfe; |
| ctx->D = 0x10325476; |
| |
| ctx->total[0] = ctx->total[1] = 0; |
| ctx->buflen = 0; |
| } |
| |
| /* Put result from CTX in first 16 bytes following RESBUF. The result |
| must be in little endian byte order. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| void * |
| md5_read_ctx (ctx, resbuf) |
| const struct md5_ctx *ctx; |
| void *resbuf; |
| { |
| ((md5_uint32 *) resbuf)[0] = SWAP (ctx->A); |
| ((md5_uint32 *) resbuf)[1] = SWAP (ctx->B); |
| ((md5_uint32 *) resbuf)[2] = SWAP (ctx->C); |
| ((md5_uint32 *) resbuf)[3] = SWAP (ctx->D); |
| |
| return resbuf; |
| } |
| |
| /* Process the remaining bytes in the internal buffer and the usual |
| prolog according to the standard and write the result to RESBUF. |
| |
| IMPORTANT: On some systems it is required that RESBUF is correctly |
| aligned for a 32 bits value. */ |
| void * |
| md5_finish_ctx (ctx, resbuf) |
| struct md5_ctx *ctx; |
| void *resbuf; |
| { |
| /* Take yet unprocessed bytes into account. */ |
| md5_uint32 bytes = ctx->buflen; |
| size_t pad; |
| |
| /* Now count remaining bytes. */ |
| ctx->total[0] += bytes; |
| if (ctx->total[0] < bytes) |
| ++ctx->total[1]; |
| |
| pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes; |
| memcpy (&ctx->buffer[bytes], fillbuf, pad); |
| |
| /* Put the 64-bit file length in *bits* at the end of the buffer. */ |
| *(md5_uint32 *) &ctx->buffer[bytes + pad] = SWAP (ctx->total[0] << 3); |
| *(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = SWAP ((ctx->total[1] << 3) | |
| (ctx->total[0] >> 29)); |
| |
| /* Process last bytes. */ |
| md5_process_block (ctx->buffer, bytes + pad + 8, ctx); |
| |
| return md5_read_ctx (ctx, resbuf); |
| } |
| |
| |
| #ifdef NEED_MD5_STREAM |
| /* Compute MD5 message digest for bytes read from STREAM. The |
| resulting message digest number will be written into the 16 bytes |
| beginning at RESBLOCK. */ |
| int |
| md5_stream (stream, resblock) |
| FILE *stream; |
| void *resblock; |
| { |
| /* Important: BLOCKSIZE must be a multiple of 64. */ |
| #define BLOCKSIZE 4096 |
| struct md5_ctx ctx; |
| char buffer[BLOCKSIZE + 72]; |
| size_t sum; |
| |
| /* Initialize the computation context. */ |
| md5_init_ctx (&ctx); |
| |
| /* Iterate over full file contents. */ |
| while (1) |
| { |
| /* We read the file in blocks of BLOCKSIZE bytes. One call of the |
| computation function processes the whole buffer so that with the |
| next round of the loop another block can be read. */ |
| size_t n; |
| sum = 0; |
| |
| /* Read block. Take care for partial reads. */ |
| do |
| { |
| n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); |
| |
| sum += n; |
| } |
| while (sum < BLOCKSIZE && n != 0); |
| if (n == 0 && ferror (stream)) |
| return 1; |
| |
| /* If end of file is reached, end the loop. */ |
| if (n == 0) |
| break; |
| |
| /* Process buffer with BLOCKSIZE bytes. Note that |
| BLOCKSIZE % 64 == 0 |
| */ |
| md5_process_block (buffer, BLOCKSIZE, &ctx); |
| } |
| |
| /* Add the last bytes if necessary. */ |
| if (sum > 0) |
| md5_process_bytes (buffer, sum, &ctx); |
| |
| /* Construct result in desired memory. */ |
| md5_finish_ctx (&ctx, resblock); |
| return 0; |
| } |
| #endif |
| |
| |
| #ifdef NEED_MD5_BUFFER |
| /* Compute MD5 message digest for LEN bytes beginning at BUFFER. The |
| result is always in little endian byte order, so that a byte-wise |
| output yields to the wanted ASCII representation of the message |
| digest. */ |
| void * |
| md5_buffer (buffer, len, resblock) |
| const char *buffer; |
| size_t len; |
| void *resblock; |
| { |
| struct md5_ctx ctx; |
| |
| /* Initialize the computation context. */ |
| md5_init_ctx (&ctx); |
| |
| /* Process whole buffer but last len % 64 bytes. */ |
| md5_process_bytes (buffer, len, &ctx); |
| |
| /* Put result in desired memory area. */ |
| return md5_finish_ctx (&ctx, resblock); |
| } |
| #endif |
| |
| |
| void |
| md5_process_bytes (buffer, len, ctx) |
| const void *buffer; |
| size_t len; |
| struct md5_ctx *ctx; |
| { |
| /* When we already have some bits in our internal buffer concatenate |
| both inputs first. */ |
| if (ctx->buflen != 0) |
| { |
| size_t left_over = ctx->buflen; |
| size_t add = 128 - left_over > len ? len : 128 - left_over; |
| |
| memcpy (&ctx->buffer[left_over], buffer, add); |
| ctx->buflen += add; |
| |
| if (ctx->buflen > 64) |
| { |
| md5_process_block (ctx->buffer, ctx->buflen & ~63, ctx); |
| |
| ctx->buflen &= 63; |
| /* The regions in the following copy operation cannot overlap. */ |
| memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63], |
| ctx->buflen); |
| } |
| |
| buffer = (const char *) buffer + add; |
| len -= add; |
| } |
| |
| /* Process available complete blocks. */ |
| if (len >= 64) |
| { |
| #if !_STRING_ARCH_unaligned |
| /* To check alignment gcc has an appropriate operator. Other |
| compilers don't. */ |
| # if __GNUC__ >= 2 |
| # define UNALIGNED_P(p) (((md5_uintptr) p) % __alignof__ (md5_uint32) != 0) |
| # else |
| # define UNALIGNED_P(p) (((md5_uintptr) p) % sizeof (md5_uint32) != 0) |
| # endif |
| if (UNALIGNED_P (buffer)) |
| while (len > 64) |
| { |
| md5_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); |
| buffer = (const char *) buffer + 64; |
| len -= 64; |
| } |
| else |
| #endif |
| { |
| md5_process_block (buffer, len & ~63, ctx); |
| buffer = (const char *) buffer + (len & ~63); |
| len &= 63; |
| } |
| } |
| |
| /* Move remaining bytes in internal buffer. */ |
| if (len > 0) |
| { |
| size_t left_over = ctx->buflen; |
| |
| memcpy (&ctx->buffer[left_over], buffer, len); |
| left_over += len; |
| if (left_over >= 64) |
| { |
| md5_process_block (ctx->buffer, 64, ctx); |
| left_over -= 64; |
| memcpy (ctx->buffer, &ctx->buffer[64], left_over); |
| } |
| ctx->buflen = left_over; |
| } |
| } |
| |
| |
| /* These are the four functions used in the four steps of the MD5 algorithm |
| and defined in the RFC 1321. The first function is a little bit optimized |
| (as found in Colin Plumbs public domain implementation). */ |
| /* #define FF(b, c, d) ((b & c) | (~b & d)) */ |
| #define FF(b, c, d) (d ^ (b & (c ^ d))) |
| #define FG(b, c, d) FF (d, b, c) |
| #define FH(b, c, d) (b ^ c ^ d) |
| #define FI(b, c, d) (c ^ (b | ~d)) |
| |
| /* Process LEN bytes of BUFFER, accumulating context into CTX. |
| It is assumed that LEN % 64 == 0. */ |
| |
| void |
| md5_process_block (buffer, len, ctx) |
| const void *buffer; |
| size_t len; |
| struct md5_ctx *ctx; |
| { |
| md5_uint32 correct_words[16]; |
| const md5_uint32 *words = buffer; |
| size_t nwords = len / sizeof (md5_uint32); |
| const md5_uint32 *endp = words + nwords; |
| md5_uint32 A = ctx->A; |
| md5_uint32 B = ctx->B; |
| md5_uint32 C = ctx->C; |
| md5_uint32 D = ctx->D; |
| |
| /* First increment the byte count. RFC 1321 specifies the possible |
| length of the file up to 2^64 bits. Here we only compute the |
| number of bytes. Do a double word increment. */ |
| ctx->total[0] += len; |
| if (ctx->total[0] < len) |
| ++ctx->total[1]; |
| |
| /* Process all bytes in the buffer with 64 bytes in each round of |
| the loop. */ |
| while (words < endp) |
| { |
| md5_uint32 *cwp = correct_words; |
| md5_uint32 A_save = A; |
| md5_uint32 B_save = B; |
| md5_uint32 C_save = C; |
| md5_uint32 D_save = D; |
| |
| /* First round: using the given function, the context and a constant |
| the next context is computed. Because the algorithms processing |
| unit is a 32-bit word and it is determined to work on words in |
| little endian byte order we perhaps have to change the byte order |
| before the computation. To reduce the work for the next steps |
| we store the swapped words in the array CORRECT_WORDS. */ |
| |
| #define OP(a, b, c, d, s, T) \ |
| do \ |
| { \ |
| a += FF (b, c, d) + (*cwp++ = SWAP (*words)) + T; \ |
| ++words; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } \ |
| while (0) |
| |
| /* It is unfortunate that C does not provide an operator for |
| cyclic rotation. Hope the C compiler is smart enough. */ |
| #define CYCLIC(w, s) (w = (w << s) | (w >> (32 - s))) |
| |
| /* Before we start, one word to the strange constants. |
| They are defined in RFC 1321 as |
| |
| T[i] = (int) (4294967296.0 * fabs (sin (i))), i=1..64 |
| */ |
| |
| /* Round 1. */ |
| OP (A, B, C, D, 7, 0xd76aa478); |
| OP (D, A, B, C, 12, 0xe8c7b756); |
| OP (C, D, A, B, 17, 0x242070db); |
| OP (B, C, D, A, 22, 0xc1bdceee); |
| OP (A, B, C, D, 7, 0xf57c0faf); |
| OP (D, A, B, C, 12, 0x4787c62a); |
| OP (C, D, A, B, 17, 0xa8304613); |
| OP (B, C, D, A, 22, 0xfd469501); |
| OP (A, B, C, D, 7, 0x698098d8); |
| OP (D, A, B, C, 12, 0x8b44f7af); |
| OP (C, D, A, B, 17, 0xffff5bb1); |
| OP (B, C, D, A, 22, 0x895cd7be); |
| OP (A, B, C, D, 7, 0x6b901122); |
| OP (D, A, B, C, 12, 0xfd987193); |
| OP (C, D, A, B, 17, 0xa679438e); |
| OP (B, C, D, A, 22, 0x49b40821); |
| |
| /* For the second to fourth round we have the possibly swapped words |
| in CORRECT_WORDS. Redefine the macro to take an additional first |
| argument specifying the function to use. */ |
| #undef OP |
| #define OP(f, a, b, c, d, k, s, T) \ |
| do \ |
| { \ |
| a += f (b, c, d) + correct_words[k] + T; \ |
| CYCLIC (a, s); \ |
| a += b; \ |
| } \ |
| while (0) |
| |
| /* Round 2. */ |
| OP (FG, A, B, C, D, 1, 5, 0xf61e2562); |
| OP (FG, D, A, B, C, 6, 9, 0xc040b340); |
| OP (FG, C, D, A, B, 11, 14, 0x265e5a51); |
| OP (FG, B, C, D, A, 0, 20, 0xe9b6c7aa); |
| OP (FG, A, B, C, D, 5, 5, 0xd62f105d); |
| OP (FG, D, A, B, C, 10, 9, 0x02441453); |
| OP (FG, C, D, A, B, 15, 14, 0xd8a1e681); |
| OP (FG, B, C, D, A, 4, 20, 0xe7d3fbc8); |
| OP (FG, A, B, C, D, 9, 5, 0x21e1cde6); |
| OP (FG, D, A, B, C, 14, 9, 0xc33707d6); |
| OP (FG, C, D, A, B, 3, 14, 0xf4d50d87); |
| OP (FG, B, C, D, A, 8, 20, 0x455a14ed); |
| OP (FG, A, B, C, D, 13, 5, 0xa9e3e905); |
| OP (FG, D, A, B, C, 2, 9, 0xfcefa3f8); |
| OP (FG, C, D, A, B, 7, 14, 0x676f02d9); |
| OP (FG, B, C, D, A, 12, 20, 0x8d2a4c8a); |
| |
| /* Round 3. */ |
| OP (FH, A, B, C, D, 5, 4, 0xfffa3942); |
| OP (FH, D, A, B, C, 8, 11, 0x8771f681); |
| OP (FH, C, D, A, B, 11, 16, 0x6d9d6122); |
| OP (FH, B, C, D, A, 14, 23, 0xfde5380c); |
| OP (FH, A, B, C, D, 1, 4, 0xa4beea44); |
| OP (FH, D, A, B, C, 4, 11, 0x4bdecfa9); |
| OP (FH, C, D, A, B, 7, 16, 0xf6bb4b60); |
| OP (FH, B, C, D, A, 10, 23, 0xbebfbc70); |
| OP (FH, A, B, C, D, 13, 4, 0x289b7ec6); |
| OP (FH, D, A, B, C, 0, 11, 0xeaa127fa); |
| OP (FH, C, D, A, B, 3, 16, 0xd4ef3085); |
| OP (FH, B, C, D, A, 6, 23, 0x04881d05); |
| OP (FH, A, B, C, D, 9, 4, 0xd9d4d039); |
| OP (FH, D, A, B, C, 12, 11, 0xe6db99e5); |
| OP (FH, C, D, A, B, 15, 16, 0x1fa27cf8); |
| OP (FH, B, C, D, A, 2, 23, 0xc4ac5665); |
| |
| /* Round 4. */ |
| OP (FI, A, B, C, D, 0, 6, 0xf4292244); |
| OP (FI, D, A, B, C, 7, 10, 0x432aff97); |
| OP (FI, C, D, A, B, 14, 15, 0xab9423a7); |
| OP (FI, B, C, D, A, 5, 21, 0xfc93a039); |
| OP (FI, A, B, C, D, 12, 6, 0x655b59c3); |
| OP (FI, D, A, B, C, 3, 10, 0x8f0ccc92); |
| OP (FI, C, D, A, B, 10, 15, 0xffeff47d); |
| OP (FI, B, C, D, A, 1, 21, 0x85845dd1); |
| OP (FI, A, B, C, D, 8, 6, 0x6fa87e4f); |
| OP (FI, D, A, B, C, 15, 10, 0xfe2ce6e0); |
| OP (FI, C, D, A, B, 6, 15, 0xa3014314); |
| OP (FI, B, C, D, A, 13, 21, 0x4e0811a1); |
| OP (FI, A, B, C, D, 4, 6, 0xf7537e82); |
| OP (FI, D, A, B, C, 11, 10, 0xbd3af235); |
| OP (FI, C, D, A, B, 2, 15, 0x2ad7d2bb); |
| OP (FI, B, C, D, A, 9, 21, 0xeb86d391); |
| |
| /* Add the starting values of the context. */ |
| A += A_save; |
| B += B_save; |
| C += C_save; |
| D += D_save; |
| } |
| |
| /* Put checksum in context given as argument. */ |
| ctx->A = A; |
| ctx->B = B; |
| ctx->C = C; |
| ctx->D = D; |
| } |