blob: e6ecaadc724b9a8da1b507b83c30b3d5002b828d [file] [log] [blame]
/* Return symbol table of archive.
Copyright (C) 1998, 1999, 2000, 2002, 2005 Red Hat, Inc.
This file is part of Red Hat elfutils.
Written by Ulrich Drepper <drepper@redhat.com>, 1998.
Red Hat elfutils is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by the
Free Software Foundation; version 2 of the License.
Red Hat elfutils is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License along
with Red Hat elfutils; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
In addition, as a special exception, Red Hat, Inc. gives You the
additional right to link the code of Red Hat elfutils with code licensed
under any Open Source Initiative certified open source license
(http://www.opensource.org/licenses/index.php) which requires the
distribution of source code with any binary distribution and to
distribute linked combinations of the two. Non-GPL Code permitted under
this exception must only link to the code of Red Hat elfutils through
those well defined interfaces identified in the file named EXCEPTION
found in the source code files (the "Approved Interfaces"). The files
of Non-GPL Code may instantiate templates or use macros or inline
functions from the Approved Interfaces without causing the resulting
work to be covered by the GNU General Public License. Only Red Hat,
Inc. may make changes or additions to the list of Approved Interfaces.
Red Hat's grant of this exception is conditioned upon your not adding
any new exceptions. If you wish to add a new Approved Interface or
exception, please contact Red Hat. You must obey the GNU General Public
License in all respects for all of the Red Hat elfutils code and other
code used in conjunction with Red Hat elfutils except the Non-GPL Code
covered by this exception. If you modify this file, you may extend this
exception to your version of the file, but you are not obligated to do
so. If you do not wish to provide this exception without modification,
you must delete this exception statement from your version and license
this file solely under the GPL without exception.
Red Hat elfutils is an included package of the Open Invention Network.
An included package of the Open Invention Network is a package for which
Open Invention Network licensees cross-license their patents. No patent
license is granted, either expressly or impliedly, by designation as an
included package. Should you wish to participate in the Open Invention
Network licensing program, please visit www.openinventionnetwork.com
<http://www.openinventionnetwork.com>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <byteswap.h>
#include <endian.h>
#include <errno.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <system.h>
#include <dl-hash.h>
#include "libelfP.h"
Elf_Arsym *
elf_getarsym (elf, ptr)
Elf *elf;
size_t *ptr;
{
if (elf->kind != ELF_K_AR)
{
/* This is no archive. */
__libelf_seterrno (ELF_E_NO_ARCHIVE);
return NULL;
}
if (ptr != NULL)
/* In case of an error or when we know the value store the expected
value now. Doing this allows us easier exits in an error case. */
*ptr = elf->state.ar.ar_sym_num;
if (elf->state.ar.ar_sym == (Elf_Arsym *) -1l)
{
/* There is no index. */
__libelf_seterrno (ELF_E_NO_INDEX);
return NULL;
}
Elf_Arsym *result = elf->state.ar.ar_sym;
if (result == NULL)
{
/* We have not yet read the index. */
rwlock_wrlock (elf->lock);
/* In case we find no index remember this for the next call. */
elf->state.ar.ar_sym = (Elf_Arsym *) -1l;
struct ar_hdr *index_hdr;
if (elf->map_address == NULL)
{
/* We must read index from the file. */
assert (elf->fildes != -1);
if (pread_retry (elf->fildes, &elf->state.ar.ar_hdr,
sizeof (struct ar_hdr), elf->start_offset + SARMAG)
!= sizeof (struct ar_hdr))
{
/* It is not possible to read the index. Maybe it does not
exist. */
__libelf_seterrno (ELF_E_READ_ERROR);
goto out;
}
index_hdr = &elf->state.ar.ar_hdr;
}
else
{
if (SARMAG + sizeof (struct ar_hdr) > elf->maximum_size)
{
/* There is no room for the full archive. */
__libelf_seterrno (ELF_E_NO_INDEX);
goto out;
}
index_hdr = (struct ar_hdr *) (elf->map_address
+ elf->start_offset + SARMAG);
}
/* Now test whether this really is an archive. */
if (memcmp (index_hdr->ar_fmag, ARFMAG, 2) != 0)
{
/* Invalid magic bytes. */
__libelf_seterrno (ELF_E_ARCHIVE_FMAG);
goto out;
}
/* Now test whether this is the index. It is denoted by the
name being "/ ".
XXX This is not entirely true. There are some more forms.
Which of them shall we handle? */
if (memcmp (index_hdr->ar_name, "/ ", 16) != 0)
{
/* If the index is not the first entry, there is no index.
XXX Is this true? */
__libelf_seterrno (ELF_E_NO_INDEX);
goto out;
}
/* We have an archive. The first word in there is the number of
entries in the table. */
uint32_t n;
if (elf->map_address == NULL)
{
if (pread_retry (elf->fildes, &n, sizeof (n),
elf->start_offset + SARMAG + sizeof (struct ar_hdr))
!= sizeof (n))
{
/* Cannot read the number of entries. */
__libelf_seterrno (ELF_E_NO_INDEX);
goto out;
}
}
else
n = *(uint32_t *) (elf->map_address + elf->start_offset
+ SARMAG + sizeof (struct ar_hdr));
if (__BYTE_ORDER == __LITTLE_ENDIAN)
n = bswap_32 (n);
/* Now we can perform some first tests on whether all the data
needed for the index is available. */
char tmpbuf[17];
memcpy (tmpbuf, index_hdr->ar_size, 10);
tmpbuf[10] = '\0';
size_t index_size = atol (tmpbuf);
if (SARMAG + sizeof (struct ar_hdr) + index_size > elf->maximum_size
|| n * sizeof (uint32_t) > index_size)
{
/* This index table cannot be right since it does not fit into
the file. */
__libelf_seterrno (ELF_E_NO_INDEX);
goto out;
}
/* Now we can allocate the arrays needed to store the index. */
size_t ar_sym_len = (n + 1) * sizeof (Elf_Arsym);
elf->state.ar.ar_sym = (Elf_Arsym *) malloc (ar_sym_len);
if (elf->state.ar.ar_sym != NULL)
{
uint32_t *file_data;
char *str_data;
if (elf->map_address == NULL)
{
file_data = (uint32_t *) alloca (n * sizeof (uint32_t));
ar_sym_len += index_size - n * sizeof (uint32_t);
Elf_Arsym *newp = (Elf_Arsym *) realloc (elf->state.ar.ar_sym,
ar_sym_len);
if (newp == NULL)
{
free (elf->state.ar.ar_sym);
elf->state.ar.ar_sym = NULL;
__libelf_seterrno (ELF_E_NOMEM);
goto out;
}
elf->state.ar.ar_sym = newp;
char *new_str = (char *) (elf->state.ar.ar_sym + n + 1);
/* Now read the data from the file. */
if ((size_t) pread_retry (elf->fildes, file_data,
n * sizeof (uint32_t),
elf->start_offset + SARMAG
+ sizeof (struct ar_hdr)
+ sizeof (uint32_t))
!= n * sizeof (uint32_t)
|| ((size_t) pread_retry (elf->fildes, new_str,
index_size - n * sizeof (uint32_t),
elf->start_offset
+ SARMAG + sizeof (struct ar_hdr)
+ (n + 1) * sizeof (uint32_t))
!= index_size - n * sizeof (uint32_t)))
{
/* We were not able to read the data. */
free (elf->state.ar.ar_sym);
elf->state.ar.ar_sym = NULL;
__libelf_seterrno (ELF_E_NO_INDEX);
goto out;
}
str_data = (char *) new_str;
}
else
{
file_data = (uint32_t *) (elf->map_address + elf->start_offset
+ SARMAG + sizeof (struct ar_hdr)
+ sizeof (uint32_t));
str_data = (char *) &file_data[n];
}
/* Now we can build the data structure. */
Elf_Arsym *arsym = elf->state.ar.ar_sym;
for (size_t cnt = 0; cnt < n; ++cnt)
{
arsym[cnt].as_name = str_data;
if (__BYTE_ORDER == __LITTLE_ENDIAN)
arsym[cnt].as_off = bswap_32 (file_data[cnt]);
else
arsym[cnt].as_off = file_data[cnt];
arsym[cnt].as_hash = _dl_elf_hash (str_data);
str_data = rawmemchr (str_data, '\0') + 1;
}
/* At the end a special entry. */
arsym[n].as_name = NULL;
arsym[n].as_off = 0;
arsym[n].as_hash = ~0UL;
/* Tell the caller how many entries we have. */
elf->state.ar.ar_sym_num = n + 1;
}
result = elf->state.ar.ar_sym;
out:
rwlock_unlock (elf->lock);
}
if (ptr != NULL)
*ptr = elf->state.ar.ar_sym_num;
return result;
}