| #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI" |
| |
| /* |
| * ==================================================== |
| * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved. |
| * |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* INDENT OFF */ |
| /* __kernel_tan( x, y, k ) |
| * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) is returned. |
| * |
| * Algorithm |
| * 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. |
| * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. |
| * 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on |
| * [0,0.67434] |
| * 3 27 |
| * tan(x) ~ x + T1*x + ... + T13*x |
| * where |
| * |
| * |ieee_tan(x) 2 4 26 | -59.2 |
| * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 |
| * | x | |
| * |
| * Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y |
| * ~ ieee_tan(x) + (1+x*x)*y |
| * Therefore, for better accuracy in computing ieee_tan(x+y), let |
| * 3 2 2 2 2 |
| * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) |
| * then |
| * 3 2 |
| * tan(x+y) = x + (T1*x + (x *(r+y)+y)) |
| * |
| * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then |
| * tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) |
| * = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) |
| */ |
| |
| #include "fdlibm.h" |
| |
| static const double xxx[] = { |
| 3.33333333333334091986e-01, /* 3FD55555, 55555563 */ |
| 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */ |
| 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */ |
| 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */ |
| 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */ |
| 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */ |
| 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */ |
| 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */ |
| 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */ |
| 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */ |
| 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */ |
| -1.85586374855275456654e-05, /* BEF375CB, DB605373 */ |
| 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */ |
| /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ |
| /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ |
| /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */ |
| }; |
| #define one xxx[13] |
| #define pio4 xxx[14] |
| #define pio4lo xxx[15] |
| #define T xxx |
| /* INDENT ON */ |
| |
| double |
| __kernel_tan(double x, double y, int iy) { |
| double z, r, v, w, s; |
| int ix, hx; |
| |
| hx = __HI(x); /* high word of x */ |
| ix = hx & 0x7fffffff; /* high word of |x| */ |
| if (ix < 0x3e300000) { /* x < 2**-28 */ |
| if ((int) x == 0) { /* generate inexact */ |
| if (((ix | __LO(x)) | (iy + 1)) == 0) |
| return one / ieee_fabs(x); |
| else { |
| if (iy == 1) |
| return x; |
| else { /* compute -1 / (x+y) carefully */ |
| double a, t; |
| |
| z = w = x + y; |
| __LO(z) = 0; |
| v = y - (z - x); |
| t = a = -one / w; |
| __LO(t) = 0; |
| s = one + t * z; |
| return t + a * (s + t * v); |
| } |
| } |
| } |
| } |
| if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */ |
| if (hx < 0) { |
| x = -x; |
| y = -y; |
| } |
| z = pio4 - x; |
| w = pio4lo - y; |
| x = z + w; |
| y = 0.0; |
| } |
| z = x * x; |
| w = z * z; |
| /* |
| * Break x^5*(T[1]+x^2*T[2]+...) into |
| * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + |
| * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) |
| */ |
| r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + |
| w * T[11])))); |
| v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + |
| w * T[12]))))); |
| s = z * x; |
| r = y + z * (s * (r + v) + y); |
| r += T[0] * s; |
| w = x + r; |
| if (ix >= 0x3FE59428) { |
| v = (double) iy; |
| return (double) (1 - ((hx >> 30) & 2)) * |
| (v - 2.0 * (x - (w * w / (w + v) - r))); |
| } |
| if (iy == 1) |
| return w; |
| else { |
| /* |
| * if allow error up to 2 ulp, simply return |
| * -1.0 / (x+r) here |
| */ |
| /* compute -1.0 / (x+r) accurately */ |
| double a, t; |
| z = w; |
| __LO(z) = 0; |
| v = r - (z - x); /* z+v = r+x */ |
| t = a = -1.0 / w; /* a = -1.0/w */ |
| __LO(t) = 0; |
| s = 1.0 + t * z; |
| return t + a * (s + t * v); |
| } |
| } |