blob: 03b69f7f7a8566cfe87446b315b5521e9ed6050f [file] [log] [blame]
/**************************************************************************
Etherboot - BOOTP/TFTP Bootstrap Program
TLAN driver for Etherboot
***************************************************************************/
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*/
/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* to get the PCI support functions, if this is a PCI NIC */
#include "pci.h"
/* to get our own prototype */
#include "cards.h"
/*****************************************************************
* TLan Definitions
*
****************************************************************/
#define TLAN_MIN_FRAME_SIZE 64
#define TLAN_MAX_FRAME_SIZE 1600
#define TLAN_NUM_RX_LISTS 32
#define TLAN_NUM_TX_LISTS 64
#define TLAN_IGNORE 0
#define TLAN_RECORD 1
#define TLAN_DBG(lvl, format, args...) if (debug&lvl) printf("TLAN: " format, ##args );
#define TLAN_DEBUG_GNRL 0x0001
#define TLAN_DEBUG_TX 0x0002
#define TLAN_DEBUG_RX 0x0004
#define TLAN_DEBUG_LIST 0x0008
#define TLAN_DEBUG_PROBE 0x0010
#define MAX_TLAN_BOARDS 8 /* Max number of boards installed at a time */
/*****************************************************************
* Device Identification Definitions
*
****************************************************************/
#define PCI_DEVICE_ID_NETELLIGENT_10_T2 0xB012
#define PCI_DEVICE_ID_NETELLIGENT_10_100_WS_5100 0xB030
#ifndef PCI_DEVICE_ID_OLICOM_OC2183
#define PCI_DEVICE_ID_OLICOM_OC2183 0x0013
#endif
#ifndef PCI_DEVICE_ID_OLICOM_OC2325
#define PCI_DEVICE_ID_OLICOM_OC2325 0x0012
#endif
#ifndef PCI_DEVICE_ID_OLICOM_OC2326
#define PCI_DEVICE_ID_OLICOM_OC2326 0x0014
#endif
#define TLAN_ADAPTER_NONE 0x00000000
#define TLAN_ADAPTER_UNMANAGED_PHY 0x00000001
#define TLAN_ADAPTER_BIT_RATE_PHY 0x00000002
#define TLAN_ADAPTER_USE_INTERN_10 0x00000004
#define TLAN_ADAPTER_ACTIVITY_LED 0x00000008
#define TLAN_SPEED_DEFAULT 0
#define TLAN_SPEED_10 10
#define TLAN_SPEED_100 100
#define TLAN_DUPLEX_DEFAULT 0
#define TLAN_DUPLEX_HALF 1
#define TLAN_DUPLEX_FULL 2
#define TLAN_BUFFERS_PER_LIST 10
#define TLAN_LAST_BUFFER 0x80000000
#define TLAN_CSTAT_UNUSED 0x8000
#define TLAN_CSTAT_FRM_CMP 0x4000
#define TLAN_CSTAT_READY 0x3000
#define TLAN_CSTAT_EOC 0x0800
#define TLAN_CSTAT_RX_ERROR 0x0400
#define TLAN_CSTAT_PASS_CRC 0x0200
#define TLAN_CSTAT_DP_PR 0x0100
/*****************************************************************
* PHY definitions
*
****************************************************************/
#define TLAN_PHY_MAX_ADDR 0x1F
#define TLAN_PHY_NONE 0x20
/*****************************************************************
* TLan Driver Timer Definitions
*
****************************************************************/
#define TLAN_TIMER_LINK_BEAT 1
#define TLAN_TIMER_ACTIVITY 2
#define TLAN_TIMER_PHY_PDOWN 3
#define TLAN_TIMER_PHY_PUP 4
#define TLAN_TIMER_PHY_RESET 5
#define TLAN_TIMER_PHY_START_LINK 6
#define TLAN_TIMER_PHY_FINISH_AN 7
#define TLAN_TIMER_FINISH_RESET 8
#define TLAN_TIMER_ACT_DELAY (HZ/10)
/*****************************************************************
* TLan Driver Eeprom Definitions
*
****************************************************************/
#define TLAN_EEPROM_ACK 0
#define TLAN_EEPROM_STOP 1
/*****************************************************************
* Host Register Offsets and Contents
*
****************************************************************/
#define TLAN_HOST_CMD 0x00
#define TLAN_HC_GO 0x80000000
#define TLAN_HC_STOP 0x40000000
#define TLAN_HC_ACK 0x20000000
#define TLAN_HC_CS_MASK 0x1FE00000
#define TLAN_HC_EOC 0x00100000
#define TLAN_HC_RT 0x00080000
#define TLAN_HC_NES 0x00040000
#define TLAN_HC_AD_RST 0x00008000
#define TLAN_HC_LD_TMR 0x00004000
#define TLAN_HC_LD_THR 0x00002000
#define TLAN_HC_REQ_INT 0x00001000
#define TLAN_HC_INT_OFF 0x00000800
#define TLAN_HC_INT_ON 0x00000400
#define TLAN_HC_AC_MASK 0x000000FF
#define TLAN_CH_PARM 0x04
#define TLAN_DIO_ADR 0x08
#define TLAN_DA_ADR_INC 0x8000
#define TLAN_DA_RAM_ADR 0x4000
#define TLAN_HOST_INT 0x0A
#define TLAN_HI_IV_MASK 0x1FE0
#define TLAN_HI_IT_MASK 0x001C
#define TLAN_DIO_DATA 0x0C
/* ThunderLAN Internal Register DIO Offsets */
#define TLAN_NET_CMD 0x00
#define TLAN_NET_CMD_NRESET 0x80
#define TLAN_NET_CMD_NWRAP 0x40
#define TLAN_NET_CMD_CSF 0x20
#define TLAN_NET_CMD_CAF 0x10
#define TLAN_NET_CMD_NOBRX 0x08
#define TLAN_NET_CMD_DUPLEX 0x04
#define TLAN_NET_CMD_TRFRAM 0x02
#define TLAN_NET_CMD_TXPACE 0x01
#define TLAN_NET_SIO 0x01
#define TLAN_NET_SIO_MINTEN 0x80
#define TLAN_NET_SIO_ECLOK 0x40
#define TLAN_NET_SIO_ETXEN 0x20
#define TLAN_NET_SIO_EDATA 0x10
#define TLAN_NET_SIO_NMRST 0x08
#define TLAN_NET_SIO_MCLK 0x04
#define TLAN_NET_SIO_MTXEN 0x02
#define TLAN_NET_SIO_MDATA 0x01
#define TLAN_NET_STS 0x02
#define TLAN_NET_STS_MIRQ 0x80
#define TLAN_NET_STS_HBEAT 0x40
#define TLAN_NET_STS_TXSTOP 0x20
#define TLAN_NET_STS_RXSTOP 0x10
#define TLAN_NET_STS_RSRVD 0x0F
#define TLAN_NET_MASK 0x03
#define TLAN_NET_MASK_MASK7 0x80
#define TLAN_NET_MASK_MASK6 0x40
#define TLAN_NET_MASK_MASK5 0x20
#define TLAN_NET_MASK_MASK4 0x10
#define TLAN_NET_MASK_RSRVD 0x0F
#define TLAN_NET_CONFIG 0x04
#define TLAN_NET_CFG_RCLK 0x8000
#define TLAN_NET_CFG_TCLK 0x4000
#define TLAN_NET_CFG_BIT 0x2000
#define TLAN_NET_CFG_RXCRC 0x1000
#define TLAN_NET_CFG_PEF 0x0800
#define TLAN_NET_CFG_1FRAG 0x0400
#define TLAN_NET_CFG_1CHAN 0x0200
#define TLAN_NET_CFG_MTEST 0x0100
#define TLAN_NET_CFG_PHY_EN 0x0080
#define TLAN_NET_CFG_MSMASK 0x007F
#define TLAN_MAN_TEST 0x06
#define TLAN_DEF_VENDOR_ID 0x08
#define TLAN_DEF_DEVICE_ID 0x0A
#define TLAN_DEF_REVISION 0x0C
#define TLAN_DEF_SUBCLASS 0x0D
#define TLAN_DEF_MIN_LAT 0x0E
#define TLAN_DEF_MAX_LAT 0x0F
#define TLAN_AREG_0 0x10
#define TLAN_AREG_1 0x16
#define TLAN_AREG_2 0x1C
#define TLAN_AREG_3 0x22
#define TLAN_HASH_1 0x28
#define TLAN_HASH_2 0x2C
#define TLAN_GOOD_TX_FRMS 0x30
#define TLAN_TX_UNDERUNS 0x33
#define TLAN_GOOD_RX_FRMS 0x34
#define TLAN_RX_OVERRUNS 0x37
#define TLAN_DEFERRED_TX 0x38
#define TLAN_CRC_ERRORS 0x3A
#define TLAN_CODE_ERRORS 0x3B
#define TLAN_MULTICOL_FRMS 0x3C
#define TLAN_SINGLECOL_FRMS 0x3E
#define TLAN_EXCESSCOL_FRMS 0x40
#define TLAN_LATE_COLS 0x41
#define TLAN_CARRIER_LOSS 0x42
#define TLAN_ACOMMIT 0x43
#define TLAN_LED_REG 0x44
#define TLAN_LED_ACT 0x10
#define TLAN_LED_LINK 0x01
#define TLAN_BSIZE_REG 0x45
#define TLAN_MAX_RX 0x46
#define TLAN_INT_DIS 0x48
#define TLAN_ID_TX_EOC 0x04
#define TLAN_ID_RX_EOF 0x02
#define TLAN_ID_RX_EOC 0x01
/* ThunderLAN Interrupt Codes */
#define TLAN_INT_NUMBER_OF_INTS 8
#define TLAN_INT_NONE 0x0000
#define TLAN_INT_TX_EOF 0x0001
#define TLAN_INT_STAT_OVERFLOW 0x0002
#define TLAN_INT_RX_EOF 0x0003
#define TLAN_INT_DUMMY 0x0004
#define TLAN_INT_TX_EOC 0x0005
#define TLAN_INT_STATUS_CHECK 0x0006
#define TLAN_INT_RX_EOC 0x0007
#define TLAN_TLPHY_ID 0x10
#define TLAN_TLPHY_CTL 0x11
#define TLAN_TC_IGLINK 0x8000
#define TLAN_TC_SWAPOL 0x4000
#define TLAN_TC_AUISEL 0x2000
#define TLAN_TC_SQEEN 0x1000
#define TLAN_TC_MTEST 0x0800
#define TLAN_TC_RESERVED 0x07F8
#define TLAN_TC_NFEW 0x0004
#define TLAN_TC_INTEN 0x0002
#define TLAN_TC_TINT 0x0001
#define TLAN_TLPHY_STS 0x12
#define TLAN_TS_MINT 0x8000
#define TLAN_TS_PHOK 0x4000
#define TLAN_TS_POLOK 0x2000
#define TLAN_TS_TPENERGY 0x1000
#define TLAN_TS_RESERVED 0x0FFF
#define TLAN_TLPHY_PAR 0x19
#define TLAN_PHY_CIM_STAT 0x0020
#define TLAN_PHY_SPEED_100 0x0040
#define TLAN_PHY_DUPLEX_FULL 0x0080
#define TLAN_PHY_AN_EN_STAT 0x0400
/* ThunderLAN MII Registers */
/* Generic MII/PHY Registers */
#define MII_GEN_CTL 0x00
#define MII_GC_RESET 0x8000
#define MII_GC_LOOPBK 0x4000
#define MII_GC_SPEEDSEL 0x2000
#define MII_GC_AUTOENB 0x1000
#define MII_GC_PDOWN 0x0800
#define MII_GC_ISOLATE 0x0400
#define MII_GC_AUTORSRT 0x0200
#define MII_GC_DUPLEX 0x0100
#define MII_GC_COLTEST 0x0080
#define MII_GC_RESERVED 0x007F
#define MII_GEN_STS 0x01
#define MII_GS_100BT4 0x8000
#define MII_GS_100BTXFD 0x4000
#define MII_GS_100BTXHD 0x2000
#define MII_GS_10BTFD 0x1000
#define MII_GS_10BTHD 0x0800
#define MII_GS_RESERVED 0x07C0
#define MII_GS_AUTOCMPLT 0x0020
#define MII_GS_RFLT 0x0010
#define MII_GS_AUTONEG 0x0008
#define MII_GS_LINK 0x0004
#define MII_GS_JABBER 0x0002
#define MII_GS_EXTCAP 0x0001
#define MII_GEN_ID_HI 0x02
#define MII_GEN_ID_LO 0x03
#define MII_GIL_OUI 0xFC00
#define MII_GIL_MODEL 0x03F0
#define MII_GIL_REVISION 0x000F
#define MII_AN_ADV 0x04
#define MII_AN_LPA 0x05
#define MII_AN_EXP 0x06
/* ThunderLAN Specific MII/PHY Registers */
#define TLAN_TC_IGLINK 0x8000
#define TLAN_TC_SWAPOL 0x4000
#define TLAN_TC_AUISEL 0x2000
#define TLAN_TC_SQEEN 0x1000
#define TLAN_TC_MTEST 0x0800
#define TLAN_TC_RESERVED 0x07F8
#define TLAN_TC_NFEW 0x0004
#define TLAN_TC_INTEN 0x0002
#define TLAN_TC_TINT 0x0001
#define TLAN_TS_MINT 0x8000
#define TLAN_TS_PHOK 0x4000
#define TLAN_TS_POLOK 0x2000
#define TLAN_TS_TPENERGY 0x1000
#define TLAN_TS_RESERVED 0x0FFF
#define TLAN_PHY_CIM_STAT 0x0020
#define TLAN_PHY_SPEED_100 0x0040
#define TLAN_PHY_DUPLEX_FULL 0x0080
#define TLAN_PHY_AN_EN_STAT 0x0400
/* National Sem. & Level1 PHY id's */
#define NAT_SEM_ID1 0x2000
#define NAT_SEM_ID2 0x5C01
#define LEVEL1_ID1 0x7810
#define LEVEL1_ID2 0x0000
#define TLan_ClearBit( bit, port ) outb_p(inb_p(port) & ~bit, port)
#define TLan_GetBit( bit, port ) ((int) (inb_p(port) & bit))
#define TLan_SetBit( bit, port ) outb_p(inb_p(port) | bit, port)
typedef unsigned int u32;
typedef unsigned short u16;
typedef unsigned char u8;
/* Routines to access internal registers. */
inline u8 TLan_DioRead8(u16 base_addr, u16 internal_addr)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
return (inb((base_addr + TLAN_DIO_DATA) + (internal_addr & 0x3)));
} /* TLan_DioRead8 */
inline u16 TLan_DioRead16(u16 base_addr, u16 internal_addr)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
return (inw((base_addr + TLAN_DIO_DATA) + (internal_addr & 0x2)));
} /* TLan_DioRead16 */
inline u32 TLan_DioRead32(u16 base_addr, u16 internal_addr)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
return (inl(base_addr + TLAN_DIO_DATA));
} /* TLan_DioRead32 */
inline void TLan_DioWrite8(u16 base_addr, u16 internal_addr, u8 data)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
outb(data, base_addr + TLAN_DIO_DATA + (internal_addr & 0x3));
}
inline void TLan_DioWrite16(u16 base_addr, u16 internal_addr, u16 data)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
outw(data, base_addr + TLAN_DIO_DATA + (internal_addr & 0x2));
}
inline void TLan_DioWrite32(u16 base_addr, u16 internal_addr, u32 data)
{
outw(internal_addr, base_addr + TLAN_DIO_ADR);
outl(data, base_addr + TLAN_DIO_DATA + (internal_addr & 0x2));
}
/* NIC specific static variables go here */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Eeprom routines
The Compaq Netelligent 10 and 10/100 cards use a Microchip 24C02A
EEPROM. These functions are based on information in Microchip's
data sheet. I don't know how well this functions will work with
other EEPROMs.
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_EeSendStart
*
* Returns:
* Nothing
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
*
* This function sends a start cycle to an EEPROM attached
* to a TLAN chip.
*
**************************************************************/
static void TLan_EeSendStart( u16 io_base )
{
u16 sio;
outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR );
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_SetBit( TLAN_NET_SIO_EDATA, sio );
TLan_SetBit( TLAN_NET_SIO_ETXEN, sio );
TLan_ClearBit( TLAN_NET_SIO_EDATA, sio );
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
} /* TLan_EeSendStart */
/***************************************************************
* TLan_EeSendByte
*
* Returns:
* If the correct ack was received, 0, otherwise 1
* Parms: io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* data The 8 bits of information to
* send to the EEPROM.
* stop If TLAN_EEPROM_STOP is passed, a
* stop cycle is sent after the
* byte is sent after the ack is
* read.
*
* This function sends a byte on the serial EEPROM line,
* driving the clock to send each bit. The function then
* reverses transmission direction and reads an acknowledge
* bit.
*
**************************************************************/
static int TLan_EeSendByte( u16 io_base, u8 data, int stop )
{
int err;
u8 place;
u16 sio;
outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR );
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
/* Assume clock is low, tx is enabled; */
for ( place = 0x80; place != 0; place >>= 1 ) {
if ( place & data )
TLan_SetBit( TLAN_NET_SIO_EDATA, sio );
else
TLan_ClearBit( TLAN_NET_SIO_EDATA, sio );
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
}
TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio );
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
err = TLan_GetBit( TLAN_NET_SIO_EDATA, sio );
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
TLan_SetBit( TLAN_NET_SIO_ETXEN, sio );
if ( ( ! err ) && stop ) {
TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* STOP, raise data while clock is high */
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_SetBit( TLAN_NET_SIO_EDATA, sio );
}
return ( err );
} /* TLan_EeSendByte */
/***************************************************************
* TLan_EeReceiveByte
*
* Returns:
* Nothing
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* data An address to a char to hold the
* data sent from the EEPROM.
* stop If TLAN_EEPROM_STOP is passed, a
* stop cycle is sent after the
* byte is received, and no ack is
* sent.
*
* This function receives 8 bits of data from the EEPROM
* over the serial link. It then sends and ack bit, or no
* ack and a stop bit. This function is used to retrieve
* data after the address of a byte in the EEPROM has been
* sent.
*
**************************************************************/
static void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop )
{
u8 place;
u16 sio;
outw( TLAN_NET_SIO, io_base + TLAN_DIO_ADR );
sio = io_base + TLAN_DIO_DATA + TLAN_NET_SIO;
*data = 0;
/* Assume clock is low, tx is enabled; */
TLan_ClearBit( TLAN_NET_SIO_ETXEN, sio );
for ( place = 0x80; place; place >>= 1 ) {
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
if ( TLan_GetBit( TLAN_NET_SIO_EDATA, sio ) )
*data |= place;
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
}
TLan_SetBit( TLAN_NET_SIO_ETXEN, sio );
if ( ! stop ) {
TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* Ack = 0 */
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
} else {
TLan_SetBit( TLAN_NET_SIO_EDATA, sio ); /* No ack = 1 (?) */
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_ClearBit( TLAN_NET_SIO_ECLOK, sio );
TLan_ClearBit( TLAN_NET_SIO_EDATA, sio ); /* STOP, raise data while clock is high */
TLan_SetBit( TLAN_NET_SIO_ECLOK, sio );
TLan_SetBit( TLAN_NET_SIO_EDATA, sio );
}
} /* TLan_EeReceiveByte */
/***************************************************************
* TLan_EeReadByte
*
* Returns:
* No error = 0, else, the stage at which the error
* occurred.
* Parms:
* io_base The IO port base address for the
* TLAN device with the EEPROM to
* use.
* ee_addr The address of the byte in the
* EEPROM whose contents are to be
* retrieved.
* data An address to a char to hold the
* data obtained from the EEPROM.
*
* This function reads a byte of information from an byte
* cell in the EEPROM.
*
**************************************************************/
static int TLan_EeReadByte( u16 io_base, u8 ee_addr, u8 *data )
{
int err;
unsigned long flags = 0;
int ret=0;
TLan_EeSendStart( io_base );
err = TLan_EeSendByte( io_base, 0xA0, TLAN_EEPROM_ACK );
if (err)
{
ret=1;
goto fail;
}
err = TLan_EeSendByte( io_base, ee_addr, TLAN_EEPROM_ACK );
if (err)
{
ret=2;
goto fail;
}
TLan_EeSendStart( io_base );
err = TLan_EeSendByte( io_base, 0xA1, TLAN_EEPROM_ACK );
if (err)
{
ret=3;
goto fail;
}
TLan_EeReceiveByte( io_base, data, TLAN_EEPROM_STOP );
fail:
return ret;
} /* TLan_EeReadByte */
#if 0
/* Not yet converted from Linux driver */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver PHY Layer Routines
******************************************************************************
*****************************************************************************/
/*********************************************************************
* TLan_PhyPrint
*
* Returns:
* Nothing
* Parms:
* dev A pointer to the device structure of the
* TLAN device having the PHYs to be detailed.
*
* This function prints the registers a PHY (aka tranceiver).
*
********************************************************************/
void TLan_PhyPrint( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 i, data0, data1, data2, data3, phy;
phy = priv->phy[priv->phyNum];
if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) {
printk( "TLAN: Device %s, Unmanaged PHY.\n", dev->name );
} else if ( phy <= TLAN_PHY_MAX_ADDR ) {
printk( "TLAN: Device %s, PHY 0x%02x.\n", dev->name, phy );
printk( "TLAN: Off. +0 +1 +2 +3 \n" );
for ( i = 0; i < 0x20; i+= 4 ) {
printk( "TLAN: 0x%02x", i );
TLan_MiiReadReg( dev, phy, i, &data0 );
printk( " 0x%04hx", data0 );
TLan_MiiReadReg( dev, phy, i + 1, &data1 );
printk( " 0x%04hx", data1 );
TLan_MiiReadReg( dev, phy, i + 2, &data2 );
printk( " 0x%04hx", data2 );
TLan_MiiReadReg( dev, phy, i + 3, &data3 );
printk( " 0x%04hx\n", data3 );
}
} else {
printk( "TLAN: Device %s, Invalid PHY.\n", dev->name );
}
} /* TLan_PhyPrint */
/*********************************************************************
* TLan_PhyDetect
*
* Returns:
* Nothing
* Parms:
* dev A pointer to the device structure of the adapter
* for which the PHY needs determined.
*
* So far I've found that adapters which have external PHYs
* may also use the internal PHY for part of the functionality.
* (eg, AUI/Thinnet). This function finds out if this TLAN
* chip has an internal PHY, and then finds the first external
* PHY (starting from address 0) if it exists).
*
********************************************************************/
void TLan_PhyDetect( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 control;
u16 hi;
u16 lo;
u32 phy;
if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) {
priv->phyNum = 0xFFFF;
return;
}
TLan_MiiReadReg( dev, TLAN_PHY_MAX_ADDR, MII_GEN_ID_HI, &hi );
if ( hi != 0xFFFF ) {
priv->phy[0] = TLAN_PHY_MAX_ADDR;
} else {
priv->phy[0] = TLAN_PHY_NONE;
}
priv->phy[1] = TLAN_PHY_NONE;
for ( phy = 0; phy <= TLAN_PHY_MAX_ADDR; phy++ ) {
TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &control );
TLan_MiiReadReg( dev, phy, MII_GEN_ID_HI, &hi );
TLan_MiiReadReg( dev, phy, MII_GEN_ID_LO, &lo );
if ( ( control != 0xFFFF ) || ( hi != 0xFFFF ) || ( lo != 0xFFFF ) ) {
TLAN_DBG( TLAN_DEBUG_GNRL, "PHY found at %02x %04x %04x %04x\n", phy, control, hi, lo );
if ( ( priv->phy[1] == TLAN_PHY_NONE ) && ( phy != TLAN_PHY_MAX_ADDR ) ) {
priv->phy[1] = phy;
}
}
}
if ( priv->phy[1] != TLAN_PHY_NONE ) {
priv->phyNum = 1;
} else if ( priv->phy[0] != TLAN_PHY_NONE ) {
priv->phyNum = 0;
} else {
printk( "TLAN: Cannot initialize device, no PHY was found!\n" );
}
} /* TLan_PhyDetect */
void TLan_PhyPowerDown( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 value;
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Powering down PHY(s).\n", dev->name );
value = MII_GC_PDOWN | MII_GC_LOOPBK | MII_GC_ISOLATE;
TLan_MiiSync( dev->base_addr );
TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value );
if ( ( priv->phyNum == 0 ) && ( priv->phy[1] != TLAN_PHY_NONE ) && ( ! ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) ) ) {
TLan_MiiSync( dev->base_addr );
TLan_MiiWriteReg( dev, priv->phy[1], MII_GEN_CTL, value );
}
/* Wait for 50 ms and powerup
* This is abitrary. It is intended to make sure the
* tranceiver settles.
*/
TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_PUP );
} /* TLan_PhyPowerDown */
void TLan_PhyPowerUp( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 value;
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Powering up PHY.\n", dev->name );
TLan_MiiSync( dev->base_addr );
value = MII_GC_LOOPBK;
TLan_MiiWriteReg( dev, priv->phy[priv->phyNum], MII_GEN_CTL, value );
TLan_MiiSync(dev->base_addr);
/* Wait for 500 ms and reset the
* tranceiver. The TLAN docs say both 50 ms and
* 500 ms, so do the longer, just in case.
*/
TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_RESET );
} /* TLan_PhyPowerUp */
void TLan_PhyReset( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 phy;
u16 value;
phy = priv->phy[priv->phyNum];
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Reseting PHY.\n", dev->name );
TLan_MiiSync( dev->base_addr );
value = MII_GC_LOOPBK | MII_GC_RESET;
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, value );
TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value );
while ( value & MII_GC_RESET ) {
TLan_MiiReadReg( dev, phy, MII_GEN_CTL, &value );
}
/* Wait for 500 ms and initialize.
* I don't remember why I wait this long.
* I've changed this to 50ms, as it seems long enough.
*/
TLan_SetTimer( dev, (HZ/20), TLAN_TIMER_PHY_START_LINK );
} /* TLan_PhyReset */
void TLan_PhyStartLink( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 ability;
u16 control;
u16 data;
u16 phy;
u16 status;
u16 tctl;
phy = priv->phy[priv->phyNum];
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Trying to activate link.\n", dev->name );
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status );
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &ability );
if ( ( status & MII_GS_AUTONEG ) &&
( ! priv->aui ) ) {
ability = status >> 11;
if ( priv->speed == TLAN_SPEED_10 &&
priv->duplex == TLAN_DUPLEX_HALF) {
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x0000);
} else if ( priv->speed == TLAN_SPEED_10 &&
priv->duplex == TLAN_DUPLEX_FULL) {
priv->tlanFullDuplex = TRUE;
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x0100);
} else if ( priv->speed == TLAN_SPEED_100 &&
priv->duplex == TLAN_DUPLEX_HALF) {
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x2000);
} else if ( priv->speed == TLAN_SPEED_100 &&
priv->duplex == TLAN_DUPLEX_FULL) {
priv->tlanFullDuplex = TRUE;
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x2100);
} else {
/* Set Auto-Neg advertisement */
TLan_MiiWriteReg( dev, phy, MII_AN_ADV, (ability << 5) | 1);
/* Enablee Auto-Neg */
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1000 );
/* Restart Auto-Neg */
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, 0x1200 );
/* Wait for 4 sec for autonegotiation
* to complete. The max spec time is less than this
* but the card need additional time to start AN.
* .5 sec should be plenty extra.
*/
printk( "TLAN: %s: Starting autonegotiation.\n", dev->name );
TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_PHY_FINISH_AN );
return;
}
}
if ( ( priv->aui ) && ( priv->phyNum != 0 ) ) {
priv->phyNum = 0;
data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data );
TLan_SetTimer( dev, (40*HZ/1000), TLAN_TIMER_PHY_PDOWN );
return;
} else if ( priv->phyNum == 0 ) {
TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tctl );
if ( priv->aui ) {
tctl |= TLAN_TC_AUISEL;
} else {
tctl &= ~TLAN_TC_AUISEL;
control = 0;
if ( priv->duplex == TLAN_DUPLEX_FULL ) {
control |= MII_GC_DUPLEX;
priv->tlanFullDuplex = TRUE;
}
if ( priv->speed == TLAN_SPEED_100 ) {
control |= MII_GC_SPEEDSEL;
}
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, control );
}
TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tctl );
}
/* Wait for 2 sec to give the tranceiver time
* to establish link.
*/
TLan_SetTimer( dev, (4*HZ), TLAN_TIMER_FINISH_RESET );
} /* TLan_PhyStartLink */
void TLan_PhyFinishAutoNeg( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 an_adv;
u16 an_lpa;
u16 data;
u16 mode;
u16 phy;
u16 status;
phy = priv->phy[priv->phyNum];
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status );
udelay( 1000 );
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status );
if ( ! ( status & MII_GS_AUTOCMPLT ) ) {
/* Wait for 8 sec to give the process
* more time. Perhaps we should fail after a while.
*/
if (!priv->neg_be_verbose++) {
printk(KERN_INFO "TLAN: Giving autonegotiation more time.\n");
printk(KERN_INFO "TLAN: Please check that your adapter has\n");
printk(KERN_INFO "TLAN: been properly connected to a HUB or Switch.\n");
printk(KERN_INFO "TLAN: Trying to establish link in the background...\n");
}
TLan_SetTimer( dev, (8*HZ), TLAN_TIMER_PHY_FINISH_AN );
return;
}
printk( "TLAN: %s: Autonegotiation complete.\n", dev->name );
TLan_MiiReadReg( dev, phy, MII_AN_ADV, &an_adv );
TLan_MiiReadReg( dev, phy, MII_AN_LPA, &an_lpa );
mode = an_adv & an_lpa & 0x03E0;
if ( mode & 0x0100 ) {
priv->tlanFullDuplex = TRUE;
} else if ( ! ( mode & 0x0080 ) && ( mode & 0x0040 ) ) {
priv->tlanFullDuplex = TRUE;
}
if ( ( ! ( mode & 0x0180 ) ) && ( priv->adapter->flags & TLAN_ADAPTER_USE_INTERN_10 ) && ( priv->phyNum != 0 ) ) {
priv->phyNum = 0;
data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, data );
TLan_SetTimer( dev, (400*HZ/1000), TLAN_TIMER_PHY_PDOWN );
return;
}
if ( priv->phyNum == 0 ) {
if ( ( priv->duplex == TLAN_DUPLEX_FULL ) || ( an_adv & an_lpa & 0x0040 ) ) {
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB | MII_GC_DUPLEX );
printk( "TLAN: Starting internal PHY with FULL-DUPLEX\n" );
} else {
TLan_MiiWriteReg( dev, phy, MII_GEN_CTL, MII_GC_AUTOENB );
printk( "TLAN: Starting internal PHY with HALF-DUPLEX\n" );
}
}
/* Wait for 100 ms. No reason in partiticular.
*/
TLan_SetTimer( dev, (HZ/10), TLAN_TIMER_FINISH_RESET );
} /* TLan_PhyFinishAutoNeg */
#ifdef MONITOR
/*********************************************************************
*
* TLan_phyMonitor
*
* Returns:
* None
*
* Params:
* dev The device structure of this device.
*
*
* This function monitors PHY condition by reading the status
* register via the MII bus. This can be used to give info
* about link changes (up/down), and possible switch to alternate
* media.
*
* ******************************************************************/
void TLan_PhyMonitor( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u16 phy;
u16 phy_status;
phy = priv->phy[priv->phyNum];
/* Get PHY status register */
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &phy_status );
/* Check if link has been lost */
if (!(phy_status & MII_GS_LINK)) {
if (priv->link) {
priv->link = 0;
printk(KERN_DEBUG "TLAN: %s has lost link\n", dev->name);
dev->flags &= ~IFF_RUNNING;
TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT );
return;
}
}
/* Link restablished? */
if ((phy_status & MII_GS_LINK) && !priv->link) {
priv->link = 1;
printk(KERN_DEBUG "TLAN: %s has reestablished link\n", dev->name);
dev->flags |= IFF_RUNNING;
}
/* Setup a new monitor */
TLan_SetTimer( dev, (2*HZ), TLAN_TIMER_LINK_BEAT );
}
#endif /* MONITOR */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver MII Routines
These routines are based on the information in Chap. 2 of the
"ThunderLAN Programmer's Guide", pp. 15-24.
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_MiiReadReg
*
* Returns:
* 0 if ack received ok
* 1 otherwise.
*
* Parms:
* dev The device structure containing
* The io address and interrupt count
* for this device.
* phy The address of the PHY to be queried.
* reg The register whose contents are to be
* retreived.
* val A pointer to a variable to store the
* retrieved value.
*
* This function uses the TLAN's MII bus to retreive the contents
* of a given register on a PHY. It sends the appropriate info
* and then reads the 16-bit register value from the MII bus via
* the TLAN SIO register.
*
**************************************************************/
int TLan_MiiReadReg( struct net_device *dev, u16 phy, u16 reg, u16 *val )
{
u8 nack;
u16 sio, tmp;
u32 i;
int err;
int minten;
TLanPrivateInfo *priv = dev->priv;
unsigned long flags = 0;
err = FALSE;
outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR);
sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO;
if (!in_irq())
spin_lock_irqsave(&priv->lock, flags);
TLan_MiiSync(dev->base_addr);
minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio );
if ( minten )
TLan_ClearBit(TLAN_NET_SIO_MINTEN, sio);
TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */
TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Read ( 10b ) */
TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */
TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */
TLan_ClearBit(TLAN_NET_SIO_MTXEN, sio); /* Change direction */
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Clock Idle bit */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Wait 300ns */
nack = TLan_GetBit(TLAN_NET_SIO_MDATA, sio); /* Check for ACK */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio); /* Finish ACK */
if (nack) { /* No ACK, so fake it */
for (i = 0; i < 16; i++) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
}
tmp = 0xffff;
err = TRUE;
} else { /* ACK, so read data */
for (tmp = 0, i = 0x8000; i; i >>= 1) {
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio);
if (TLan_GetBit(TLAN_NET_SIO_MDATA, sio))
tmp |= i;
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
}
}
TLan_ClearBit(TLAN_NET_SIO_MCLK, sio); /* Idle cycle */
TLan_SetBit(TLAN_NET_SIO_MCLK, sio);
if ( minten )
TLan_SetBit(TLAN_NET_SIO_MINTEN, sio);
*val = tmp;
if (!in_irq())
spin_unlock_irqrestore(&priv->lock, flags);
return err;
} /* TLan_MiiReadReg */
/***************************************************************
* TLan_MiiSendData
*
* Returns:
* Nothing
* Parms:
* base_port The base IO port of the adapter in
* question.
* dev The address of the PHY to be queried.
* data The value to be placed on the MII bus.
* num_bits The number of bits in data that are to
* be placed on the MII bus.
*
* This function sends on sequence of bits on the MII
* configuration bus.
*
**************************************************************/
void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits )
{
u16 sio;
u32 i;
if ( num_bits == 0 )
return;
outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR );
sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit( TLAN_NET_SIO_MTXEN, sio );
for ( i = ( 0x1 << ( num_bits - 1 ) ); i; i >>= 1 ) {
TLan_ClearBit( TLAN_NET_SIO_MCLK, sio );
(void) TLan_GetBit( TLAN_NET_SIO_MCLK, sio );
if ( data & i )
TLan_SetBit( TLAN_NET_SIO_MDATA, sio );
else
TLan_ClearBit( TLAN_NET_SIO_MDATA, sio );
TLan_SetBit( TLAN_NET_SIO_MCLK, sio );
(void) TLan_GetBit( TLAN_NET_SIO_MCLK, sio );
}
} /* TLan_MiiSendData */
/***************************************************************
* TLan_MiiSync
*
* Returns:
* Nothing
* Parms:
* base_port The base IO port of the adapter in
* question.
*
* This functions syncs all PHYs in terms of the MII configuration
* bus.
*
**************************************************************/
void TLan_MiiSync( u16 base_port )
{
int i;
u16 sio;
outw( TLAN_NET_SIO, base_port + TLAN_DIO_ADR );
sio = base_port + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_ClearBit( TLAN_NET_SIO_MTXEN, sio );
for ( i = 0; i < 32; i++ ) {
TLan_ClearBit( TLAN_NET_SIO_MCLK, sio );
TLan_SetBit( TLAN_NET_SIO_MCLK, sio );
}
} /* TLan_MiiSync */
/***************************************************************
* TLan_MiiWriteReg
*
* Returns:
* Nothing
* Parms:
* dev The device structure for the device
* to write to.
* phy The address of the PHY to be written to.
* reg The register whose contents are to be
* written.
* val The value to be written to the register.
*
* This function uses the TLAN's MII bus to write the contents of a
* given register on a PHY. It sends the appropriate info and then
* writes the 16-bit register value from the MII configuration bus
* via the TLAN SIO register.
*
**************************************************************/
void TLan_MiiWriteReg( struct net_device *dev, u16 phy, u16 reg, u16 val )
{
u16 sio;
int minten;
unsigned long flags = 0;
TLanPrivateInfo *priv = dev->priv;
outw(TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR);
sio = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO;
if (!in_irq())
spin_lock_irqsave(&priv->lock, flags);
TLan_MiiSync( dev->base_addr );
minten = TLan_GetBit( TLAN_NET_SIO_MINTEN, sio );
if ( minten )
TLan_ClearBit( TLAN_NET_SIO_MINTEN, sio );
TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Start ( 01b ) */
TLan_MiiSendData( dev->base_addr, 0x1, 2 ); /* Write ( 01b ) */
TLan_MiiSendData( dev->base_addr, phy, 5 ); /* Device # */
TLan_MiiSendData( dev->base_addr, reg, 5 ); /* Register # */
TLan_MiiSendData( dev->base_addr, 0x2, 2 ); /* Send ACK */
TLan_MiiSendData( dev->base_addr, val, 16 ); /* Send Data */
TLan_ClearBit( TLAN_NET_SIO_MCLK, sio ); /* Idle cycle */
TLan_SetBit( TLAN_NET_SIO_MCLK, sio );
if ( minten )
TLan_SetBit( TLAN_NET_SIO_MINTEN, sio );
if (!in_irq())
spin_unlock_irqrestore(&priv->lock, flags);
} /* TLan_MiiWriteReg */
#endif
/**************************************************************************
RESET - Reset adapter
***************************************************************************/
static void skel_reset(struct nic *nic)
{
/* put the card in its initial state */
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int skel_poll(struct nic *nic)
{
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
return (0); /* initially as this is called to flush the input */
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void skel_transmit(
struct nic *nic,
const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p) /* Packet */
{
/* send the packet to destination */
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void skel_disable(struct nic *nic)
{
}
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
***************************************************************************/
struct nic *tlan_probe(struct nic *nic, unsigned short *probe_addrs,
struct pci_device *p)
{
/* if probe_addrs is 0, then routine can use a hardwired default */
/* if board found */
{
/* point to NIC specific routines */
nic->reset = skel_reset;
nic->poll = skel_poll;
nic->transmit = skel_transmit;
nic->disable = skel_disable;
return nic;
}
/* else */
return 0;
}
#if 0
#ifndef TLAN_H
#define TLAN_H
/********************************************************************
*
* Linux ThunderLAN Driver
*
* tlan.h
* by James Banks
*
* (C) 1997-1998 Caldera, Inc.
* (C) 1999-2001 Torben Mathiasen
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
** This file is best viewed/edited with tabstop=4, colums>=132
*
*
* Dec 10, 1999 Torben Mathiasen <torben.mathiasen@compaq.com>
* New Maintainer
*
********************************************************************/
#include <asm/io.h>
#include <asm/types.h>
#include <linux/netdevice.h>
#define FALSE 0
#define TRUE 1
#define TX_TIMEOUT (10*HZ) /* We need time for auto-neg */
typedef struct tlan_adapter_entry {
u16 vendorId;
u16 deviceId;
char *deviceLabel;
u32 flags;
u16 addrOfs;
} TLanAdapterEntry;
/*****************************************************************
* EISA Definitions
*
****************************************************************/
#define EISA_ID 0xc80 /* EISA ID Registers */
#define EISA_ID0 0xc80 /* EISA ID Register 0 */
#define EISA_ID1 0xc81 /* EISA ID Register 1 */
#define EISA_ID2 0xc82 /* EISA ID Register 2 */
#define EISA_ID3 0xc83 /* EISA ID Register 3 */
#define EISA_CR 0xc84 /* EISA Control Register */
#define EISA_REG0 0xc88 /* EISA Configuration Register 0 */
#define EISA_REG1 0xc89 /* EISA Configuration Register 1 */
#define EISA_REG2 0xc8a /* EISA Configuration Register 2 */
#define EISA_REG3 0xc8f /* EISA Configuration Register 3 */
#define EISA_APROM 0xc90 /* Ethernet Address PROM */
/*****************************************************************
* Rx/Tx List Definitions
*
****************************************************************/
typedef struct tlan_buffer_ref_tag {
u32 count;
u32 address;
} TLanBufferRef;
typedef struct tlan_list_tag {
u32 forward;
u16 cStat;
u16 frameSize;
TLanBufferRef buffer[TLAN_BUFFERS_PER_LIST];
} TLanList;
typedef u8 TLanBuffer[TLAN_MAX_FRAME_SIZE];
/*****************************************************************
* TLAN Private Information Structure
*
****************************************************************/
typedef struct tlan_private_tag {
struct net_device *nextDevice;
void *dmaStorage;
u8 *padBuffer;
TLanList *rxList;
u8 *rxBuffer;
u32 rxHead;
u32 rxTail;
u32 rxEocCount;
TLanList *txList;
u8 *txBuffer;
u32 txHead;
u32 txInProgress;
u32 txTail;
u32 txBusyCount;
u32 phyOnline;
u32 timerSetAt;
u32 timerType;
struct timer_list timer;
struct net_device_stats stats;
struct board *adapter;
u32 adapterRev;
u32 aui;
u32 debug;
u32 duplex;
u32 phy[2];
u32 phyNum;
u32 speed;
u8 tlanRev;
u8 tlanFullDuplex;
char devName[8];
spinlock_t lock;
u8 link;
u8 is_eisa;
struct tq_struct tlan_tqueue;
u8 neg_be_verbose;
} TLanPrivateInfo;
#define TLAN_HC_GO 0x80000000
#define TLAN_HC_STOP 0x40000000
#define TLAN_HC_ACK 0x20000000
#define TLAN_HC_CS_MASK 0x1FE00000
#define TLAN_HC_EOC 0x00100000
#define TLAN_HC_RT 0x00080000
#define TLAN_HC_NES 0x00040000
#define TLAN_HC_AD_RST 0x00008000
#define TLAN_HC_LD_TMR 0x00004000
#define TLAN_HC_LD_THR 0x00002000
#define TLAN_HC_REQ_INT 0x00001000
#define TLAN_HC_INT_OFF 0x00000800
#define TLAN_HC_INT_ON 0x00000400
#define TLAN_HC_AC_MASK 0x000000FF
#define TLAN_DA_ADR_INC 0x8000
#define TLAN_DA_RAM_ADR 0x4000
#define TLAN_HI_IV_MASK 0x1FE0
#define TLAN_HI_IT_MASK 0x001C
#define TLAN_NET_CMD_NRESET 0x80
#define TLAN_NET_CMD_NWRAP 0x40
#define TLAN_NET_CMD_CSF 0x20
#define TLAN_NET_CMD_CAF 0x10
#define TLAN_NET_CMD_NOBRX 0x08
#define TLAN_NET_CMD_DUPLEX 0x04
#define TLAN_NET_CMD_TRFRAM 0x02
#define TLAN_NET_CMD_TXPACE 0x01
#define TLAN_NET_SIO_MINTEN 0x80
#define TLAN_NET_SIO_ECLOK 0x40
#define TLAN_NET_SIO_ETXEN 0x20
#define TLAN_NET_SIO_EDATA 0x10
#define TLAN_NET_SIO_NMRST 0x08
#define TLAN_NET_SIO_MCLK 0x04
#define TLAN_NET_SIO_MTXEN 0x02
#define TLAN_NET_SIO_MDATA 0x01
#define TLAN_NET_STS_MIRQ 0x80
#define TLAN_NET_STS_HBEAT 0x40
#define TLAN_NET_STS_TXSTOP 0x20
#define TLAN_NET_STS_RXSTOP 0x10
#define TLAN_NET_STS_RSRVD 0x0F
#define TLAN_NET_MASK_MASK7 0x80
#define TLAN_NET_MASK_MASK6 0x40
#define TLAN_NET_MASK_MASK5 0x20
#define TLAN_NET_MASK_MASK4 0x10
#define TLAN_NET_MASK_RSRVD 0x0F
#define TLAN_NET_CFG_RCLK 0x8000
#define TLAN_NET_CFG_TCLK 0x4000
#define TLAN_NET_CFG_BIT 0x2000
#define TLAN_NET_CFG_RXCRC 0x1000
#define TLAN_NET_CFG_PEF 0x0800
#define TLAN_NET_CFG_1FRAG 0x0400
#define TLAN_NET_CFG_1CHAN 0x0200
#define TLAN_NET_CFG_MTEST 0x0100
#define TLAN_NET_CFG_PHY_EN 0x0080
#define TLAN_NET_CFG_MSMASK 0x007F
#define TLAN_LED_ACT 0x10
#define TLAN_LED_LINK 0x01
#define TLAN_ID_TX_EOC 0x04
#define TLAN_ID_RX_EOF 0x02
#define TLAN_ID_RX_EOC 0x01
#define CIRC_INC( a, b ) if ( ++a >= b ) a = 0
#ifdef I_LIKE_A_FAST_HASH_FUNCTION
/* given 6 bytes, view them as 8 6-bit numbers and return the XOR of those */
/* the code below is about seven times as fast as the original code */
inline u32 TLan_HashFunc( u8 *a )
{
u8 hash;
hash = (a[0]^a[3]); /* & 077 */
hash ^= ((a[0]^a[3])>>6); /* & 003 */
hash ^= ((a[1]^a[4])<<2); /* & 074 */
hash ^= ((a[1]^a[4])>>4); /* & 017 */
hash ^= ((a[2]^a[5])<<4); /* & 060 */
hash ^= ((a[2]^a[5])>>2); /* & 077 */
return (hash & 077);
}
#else /* original code */
inline u32 xor( u32 a, u32 b )
{
return ( ( a && ! b ) || ( ! a && b ) );
}
#define XOR8( a, b, c, d, e, f, g, h ) xor( a, xor( b, xor( c, xor( d, xor( e, xor( f, xor( g, h ) ) ) ) ) ) )
#define DA( a, bit ) ( ( (u8) a[bit/8] ) & ( (u8) ( 1 << bit%8 ) ) )
inline u32 TLan_HashFunc( u8 *a )
{
u32 hash;
hash = XOR8( DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30), DA(a,36), DA(a,42) );
hash |= XOR8( DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31), DA(a,37), DA(a,43) ) << 1;
hash |= XOR8( DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32), DA(a,38), DA(a,44) ) << 2;
hash |= XOR8( DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33), DA(a,39), DA(a,45) ) << 3;
hash |= XOR8( DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34), DA(a,40), DA(a,46) ) << 4;
hash |= XOR8( DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35), DA(a,41), DA(a,47) ) << 5;
return hash;
}
#endif /* I_LIKE_A_FAST_HASH_FUNCTION */
#endif
/*******************************************************************************
*
* Linux ThunderLAN Driver
*
* tlan.c
* by James Banks
*
* (C) 1997-1998 Caldera, Inc.
* (C) 1998 James Banks
* (C) 1999-2001 Torben Mathiasen
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
** This file is best viewed/edited with columns>=132.
*
** Useful (if not required) reading:
*
* Texas Instruments, ThunderLAN Programmer's Guide,
* TI Literature Number SPWU013A
* available in PDF format from www.ti.com
* Level One, LXT901 and LXT970 Data Sheets
* available in PDF format from www.level1.com
* National Semiconductor, DP83840A Data Sheet
* available in PDF format from www.national.com
* Microchip Technology, 24C01A/02A/04A Data Sheet
* available in PDF format from www.microchip.com
*
* Change History
*
* Tigran Aivazian <tigran@sco.com>: TLan_PciProbe() now uses
* new PCI BIOS interface.
* Alan Cox <alan@redhat.com>: Fixed the out of memory
* handling.
*
* Torben Mathiasen <torben.mathiasen@compaq.com> New Maintainer!
*
* v1.1 Dec 20, 1999 - Removed linux version checking
* Patch from Tigran Aivazian.
* - v1.1 includes Alan's SMP updates.
* - We still have problems on SMP though,
* but I'm looking into that.
*
* v1.2 Jan 02, 2000 - Hopefully fixed the SMP deadlock.
* - Removed dependency of HZ being 100.
* - We now allow higher priority timers to
* overwrite timers like TLAN_TIMER_ACTIVITY
* Patch from John Cagle <john.cagle@compaq.com>.
* - Fixed a few compiler warnings.
*
* v1.3 Feb 04, 2000 - Fixed the remaining HZ issues.
* - Removed call to pci_present().
* - Removed SA_INTERRUPT flag from irq handler.
* - Added __init and __initdata to reduce resisdent
* code size.
* - Driver now uses module_init/module_exit.
* - Rewrote init_module and tlan_probe to
* share a lot more code. We now use tlan_probe
* with builtin and module driver.
* - Driver ported to new net API.
* - tlan.txt has been reworked to reflect current
* driver (almost)
* - Other minor stuff
*
* v1.4 Feb 10, 2000 - Updated with more changes required after Dave's
* network cleanup in 2.3.43pre7 (Tigran & myself)
* - Minor stuff.
*
* v1.5 March 22, 2000 - Fixed another timer bug that would hang the driver
* if no cable/link were present.
* - Cosmetic changes.
* - TODO: Port completely to new PCI/DMA API
* Auto-Neg fallback.
*
* v1.6 April 04, 2000 - Fixed driver support for kernel-parameters. Haven't
* tested it though, as the kernel support is currently
* broken (2.3.99p4p3).
* - Updated tlan.txt accordingly.
* - Adjusted minimum/maximum frame length.
* - There is now a TLAN website up at
* http://tlan.kernel.dk
*
* v1.7 April 07, 2000 - Started to implement custom ioctls. Driver now
* reports PHY information when used with Donald
* Beckers userspace MII diagnostics utility.
*
* v1.8 April 23, 2000 - Fixed support for forced speed/duplex settings.
* - Added link information to Auto-Neg and forced
* modes. When NIC operates with auto-neg the driver
* will report Link speed & duplex modes as well as
* link partner abilities. When forced link is used,
* the driver will report status of the established
* link.
* Please read tlan.txt for additional information.
* - Removed call to check_region(), and used
* return value of request_region() instead.
*
* v1.8a May 28, 2000 - Minor updates.
*
* v1.9 July 25, 2000 - Fixed a few remaining Full-Duplex issues.
* - Updated with timer fixes from Andrew Morton.
* - Fixed module race in TLan_Open.
* - Added routine to monitor PHY status.
* - Added activity led support for Proliant devices.
*
* v1.10 Aug 30, 2000 - Added support for EISA based tlan controllers
* like the Compaq NetFlex3/E.
* - Rewrote tlan_probe to better handle multiple
* bus probes. Probing and device setup is now
* done through TLan_Probe and TLan_init_one. Actual
* hardware probe is done with kernel API and
* TLan_EisaProbe.
* - Adjusted debug information for probing.
* - Fixed bug that would cause general debug information
* to be printed after driver removal.
* - Added transmit timeout handling.
* - Fixed OOM return values in tlan_probe.
* - Fixed possible mem leak in tlan_exit
* (now tlan_remove_one).
* - Fixed timer bug in TLan_phyMonitor.
* - This driver version is alpha quality, please
* send me any bug issues you may encounter.
*
* v1.11 Aug 31, 2000 - Do not try to register irq 0 if no irq line was
* set for EISA cards.
* - Added support for NetFlex3/E with nibble-rate
* 10Base-T PHY. This is untestet as I haven't got
* one of these cards.
* - Fixed timer being added twice.
* - Disabled PhyMonitoring by default as this is
* work in progress. Define MONITOR to enable it.
* - Now we don't display link info with PHYs that
* doesn't support it (level1).
* - Incresed tx_timeout beacuse of auto-neg.
* - Adjusted timers for forced speeds.
*
* v1.12 Oct 12, 2000 - Minor fixes (memleak, init, etc.)
*
* v1.13 Nov 28, 2000 - Stop flooding console with auto-neg issues
* when link can't be established.
* - Added the bbuf option as a kernel parameter.
* - Fixed ioaddr probe bug.
* - Fixed stupid deadlock with MII interrupts.
* - Added support for speed/duplex selection with
* multiple nics.
* - Added partly fix for TX Channel lockup with
* TLAN v1.0 silicon. This needs to be investigated
* further.
*
* v1.14 Dec 16, 2000 - Added support for servicing multiple frames per.
* interrupt. Thanks goes to
* Adam Keys <adam@ti.com>
* Denis Beaudoin <dbeaudoin@ti.com>
* for providing the patch.
* - Fixed auto-neg output when using multiple
* adapters.
* - Converted to use new taskq interface.
*
* v1.14a Jan 6, 2001 - Minor adjustments (spinlocks, etc.)
*
*******************************************************************************/
#include <linux/module.h>
#include "tlan.h"
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/mii.h>
typedef u32 (TLanIntVectorFunc)( struct net_device *, u16 );
/* For removing EISA devices */
static struct net_device *TLan_Eisa_Devices;
static int TLanDevicesInstalled;
/* Set speed, duplex and aui settings */
static int aui[MAX_TLAN_BOARDS];
static int duplex[MAX_TLAN_BOARDS];
static int speed[MAX_TLAN_BOARDS];
static int boards_found;
MODULE_AUTHOR("Maintainer: Torben Mathiasen <torben.mathiasen@compaq.com>");
MODULE_DESCRIPTION("Driver for TI ThunderLAN based ethernet PCI adapters");
MODULE_LICENSE("GPL");
MODULE_PARM(aui, "1-" __MODULE_STRING(MAX_TLAN_BOARDS) "i");
MODULE_PARM(duplex, "1-" __MODULE_STRING(MAX_TLAN_BOARDS) "i");
MODULE_PARM(speed, "1-" __MODULE_STRING(MAX_TLAN_BOARDS) "i");
MODULE_PARM(debug, "i");
MODULE_PARM(bbuf, "i");
MODULE_PARM_DESC(aui, "ThunderLAN use AUI port(s) (0-1)");
MODULE_PARM_DESC(duplex, "ThunderLAN duplex setting(s) (0-default, 1-half, 2-full)");
MODULE_PARM_DESC(speed, "ThunderLAN port speen setting(s) (0,10,100)");
MODULE_PARM_DESC(debug, "ThunderLAN debug mask");
MODULE_PARM_DESC(bbuf, "ThunderLAN use big buffer (0-1)");
EXPORT_NO_SYMBOLS;
/* Define this to enable Link beat monitoring */
#undef MONITOR
/* Turn on debugging. See linux/Documentation/networking/tlan.txt for details */
static int debug;
static int bbuf;
static u8 *TLanPadBuffer;
static char TLanSignature[] = "TLAN";
static const char tlan_banner[] = "ThunderLAN driver v1.14a\n";
static int tlan_have_pci;
static int tlan_have_eisa;
const char *media[] = {
"10BaseT-HD ", "10BaseT-FD ","100baseTx-HD ",
"100baseTx-FD", "100baseT4", 0
};
int media_map[] = { 0x0020, 0x0040, 0x0080, 0x0100, 0x0200,};
static struct board {
const char *deviceLabel;
u32 flags;
u16 addrOfs;
} board_info[] __devinitdata = {
{ "Compaq Netelligent 10 T PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 },
{ "Compaq Netelligent 10/100 TX PCI UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 },
{ "Compaq Integrated NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 },
{ "Compaq NetFlex-3/P", TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 },
{ "Compaq NetFlex-3/P", TLAN_ADAPTER_NONE, 0x83 },
{ "Compaq Netelligent Integrated 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 },
{ "Compaq Netelligent Dual 10/100 TX PCI UTP", TLAN_ADAPTER_NONE, 0x83 },
{ "Compaq Netelligent 10/100 TX Embedded UTP", TLAN_ADAPTER_NONE, 0x83 },
{ "Olicom OC-2183/2185", TLAN_ADAPTER_USE_INTERN_10, 0x83 },
{ "Olicom OC-2325", TLAN_ADAPTER_UNMANAGED_PHY, 0xF8 },
{ "Olicom OC-2326", TLAN_ADAPTER_USE_INTERN_10, 0xF8 },
{ "Compaq Netelligent 10/100 TX UTP", TLAN_ADAPTER_ACTIVITY_LED, 0x83 },
{ "Compaq Netelligent 10 T/2 PCI UTP/Coax", TLAN_ADAPTER_NONE, 0x83 },
{ "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED | /* EISA card */
TLAN_ADAPTER_UNMANAGED_PHY | TLAN_ADAPTER_BIT_RATE_PHY, 0x83 },
{ "Compaq NetFlex-3/E", TLAN_ADAPTER_ACTIVITY_LED, 0x83 }, /* EISA card */
};
static struct pci_device_id tlan_pci_tbl[] __devinitdata = {
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL10,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3I,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_THUNDER,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETFLEX3B,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100PI,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100D,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_NETEL100I,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 7 },
{ PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2183,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 8 },
{ PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2325,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 9 },
{ PCI_VENDOR_ID_OLICOM, PCI_DEVICE_ID_OLICOM_OC2326,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 10 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_100_WS_5100,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 11 },
{ PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_NETELLIGENT_10_T2,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 12 },
{ 0,}
};
MODULE_DEVICE_TABLE(pci, tlan_pci_tbl);
static void TLan_EisaProbe( void );
static void TLan_Eisa_Cleanup( void );
static int TLan_Init( struct net_device * );
static int TLan_Open( struct net_device *dev );
static int TLan_StartTx( struct sk_buff *, struct net_device *);
static void TLan_HandleInterrupt( int, void *, struct pt_regs *);
static int TLan_Close( struct net_device *);
static struct net_device_stats *TLan_GetStats( struct net_device *);
static void TLan_SetMulticastList( struct net_device *);
static int TLan_ioctl( struct net_device *dev, struct ifreq *rq, int cmd);
static int TLan_probe1( struct pci_dev *pdev, long ioaddr, int irq, int rev, const struct pci_device_id *ent);
static void TLan_tx_timeout( struct net_device *dev);
static int tlan_init_one( struct pci_dev *pdev, const struct pci_device_id *ent);
static u32 TLan_HandleInvalid( struct net_device *, u16 );
static u32 TLan_HandleTxEOF( struct net_device *, u16 );
static u32 TLan_HandleStatOverflow( struct net_device *, u16 );
static u32 TLan_HandleRxEOF( struct net_device *, u16 );
static u32 TLan_HandleDummy( struct net_device *, u16 );
static u32 TLan_HandleTxEOC( struct net_device *, u16 );
static u32 TLan_HandleStatusCheck( struct net_device *, u16 );
static u32 TLan_HandleRxEOC( struct net_device *, u16 );
static void TLan_Timer( unsigned long );
static void TLan_ResetLists( struct net_device * );
static void TLan_FreeLists( struct net_device * );
static void TLan_PrintDio( u16 );
static void TLan_PrintList( TLanList *, char *, int );
static void TLan_ReadAndClearStats( struct net_device *, int );
static void TLan_ResetAdapter( struct net_device * );
static void TLan_FinishReset( struct net_device * );
static void TLan_SetMac( struct net_device *, int areg, char *mac );
static void TLan_PhyPrint( struct net_device * );
static void TLan_PhyDetect( struct net_device * );
static void TLan_PhyPowerDown( struct net_device * );
static void TLan_PhyPowerUp( struct net_device * );
static void TLan_PhyReset( struct net_device * );
static void TLan_PhyStartLink( struct net_device * );
static void TLan_PhyFinishAutoNeg( struct net_device * );
#ifdef MONITOR
static void TLan_PhyMonitor( struct net_device * );
#endif
/*
static int TLan_PhyNop( struct net_device * );
static int TLan_PhyInternalCheck( struct net_device * );
static int TLan_PhyInternalService( struct net_device * );
static int TLan_PhyDp83840aCheck( struct net_device * );
*/
static int TLan_MiiReadReg( struct net_device *, u16, u16, u16 * );
static void TLan_MiiSendData( u16, u32, unsigned );
static void TLan_MiiSync( u16 );
static void TLan_MiiWriteReg( struct net_device *, u16, u16, u16 );
static void TLan_EeSendStart( u16 );
static int TLan_EeSendByte( u16, u8, int );
static void TLan_EeReceiveByte( u16, u8 *, int );
static int TLan_EeReadByte( struct net_device *, u8, u8 * );
static TLanIntVectorFunc *TLanIntVector[TLAN_INT_NUMBER_OF_INTS] = {
TLan_HandleInvalid,
TLan_HandleTxEOF,
TLan_HandleStatOverflow,
TLan_HandleRxEOF,
TLan_HandleDummy,
TLan_HandleTxEOC,
TLan_HandleStatusCheck,
TLan_HandleRxEOC
};
static inline void
TLan_SetTimer( struct net_device *dev, u32 ticks, u32 type )
{
TLanPrivateInfo *priv = dev->priv;
unsigned long flags = 0;
if (!in_irq())
spin_lock_irqsave(&priv->lock, flags);
if ( priv->timer.function != NULL &&
priv->timerType != TLAN_TIMER_ACTIVITY ) {
if (!in_irq())
spin_unlock_irqrestore(&priv->lock, flags);
return;
}
priv->timer.function = &TLan_Timer;
if (!in_irq())
spin_unlock_irqrestore(&priv->lock, flags);
priv->timer.data = (unsigned long) dev;
priv->timerSetAt = jiffies;
priv->timerType = type;
mod_timer(&priv->timer, jiffies + ticks);
} /* TLan_SetTimer */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Primary Functions
These functions are more or less common to all Linux network drivers.
******************************************************************************
*****************************************************************************/
/***************************************************************
* tlan_remove_one
*
* Returns:
* Nothing
* Parms:
* None
*
* Goes through the TLanDevices list and frees the device
* structs and memory associated with each device (lists
* and buffers). It also ureserves the IO port regions
* associated with this device.
*
**************************************************************/
static void __devexit tlan_remove_one( struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata( pdev );
TLanPrivateInfo *priv = dev->priv;
unregister_netdev( dev );
if ( priv->dmaStorage ) {
kfree( priv->dmaStorage );
}
release_region( dev->base_addr, 0x10 );
kfree( dev );
pci_set_drvdata( pdev, NULL );
}
static struct pci_driver tlan_driver = {
name: "tlan",
id_table: tlan_pci_tbl,
probe: tlan_init_one,
remove: tlan_remove_one,
};
static int __init tlan_probe(void)
{
static int pad_allocated;
printk(KERN_INFO "%s", tlan_banner);
TLanPadBuffer = (u8 *) kmalloc(TLAN_MIN_FRAME_SIZE,
GFP_KERNEL);
if (TLanPadBuffer == NULL) {
printk(KERN_ERR "TLAN: Could not allocate memory for pad buffer.\n");
return -ENOMEM;
}
memset(TLanPadBuffer, 0, TLAN_MIN_FRAME_SIZE);
pad_allocated = 1;
TLAN_DBG(TLAN_DEBUG_PROBE, "Starting PCI Probe....\n");
/* Use new style PCI probing. Now the kernel will
do most of this for us */
pci_register_driver(&tlan_driver);
TLAN_DBG(TLAN_DEBUG_PROBE, "Starting EISA Probe....\n");
TLan_EisaProbe();
printk(KERN_INFO "TLAN: %d device%s installed, PCI: %d EISA: %d\n",
TLanDevicesInstalled, TLanDevicesInstalled == 1 ? "" : "s",
tlan_have_pci, tlan_have_eisa);
if (TLanDevicesInstalled == 0) {
pci_unregister_driver(&tlan_driver);
kfree(TLanPadBuffer);
return -ENODEV;
}
return 0;
}
static int __devinit tlan_init_one( struct pci_dev *pdev,
const struct pci_device_id *ent)
{
return TLan_probe1( pdev, -1, -1, 0, ent);
}
/*
***************************************************************
* tlan_probe1
*
* Returns:
* 0 on success, error code on error
* Parms:
* none
*
* The name is lower case to fit in with all the rest of
* the netcard_probe names. This function looks for
* another TLan based adapter, setting it up with the
* allocated device struct if one is found.
* tlan_probe has been ported to the new net API and
* now allocates its own device structure. This function
* is also used by modules.
*
**************************************************************/
static int __devinit TLan_probe1(struct pci_dev *pdev,
long ioaddr, int irq, int rev, const struct pci_device_id *ent )
{
struct net_device *dev;
TLanPrivateInfo *priv;
u8 pci_rev;
u16 device_id;
int reg;
if (pdev && pci_enable_device(pdev))
return -EIO;
dev = init_etherdev(NULL, sizeof(TLanPrivateInfo));
if (dev == NULL) {
printk(KERN_ERR "TLAN: Could not allocate memory for device.\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
priv = dev->priv;
/* Is this a PCI device? */
if (pdev) {
u32 pci_io_base = 0;
priv->adapter = &board_info[ent->driver_data];
pci_read_config_byte ( pdev, PCI_REVISION_ID, &pci_rev);
for ( reg= 0; reg <= 5; reg ++ ) {
if (pci_resource_flags(pdev, reg) & IORESOURCE_IO) {
pci_io_base = pci_resource_start(pdev, reg);
TLAN_DBG( TLAN_DEBUG_GNRL, "IO mapping is available at %x.\n",
pci_io_base);
break;
}
}
if (!pci_io_base) {
printk(KERN_ERR "TLAN: No IO mappings available\n");
unregister_netdev(dev);
kfree(dev);
return -ENODEV;
}
dev->base_addr = pci_io_base;
dev->irq = pdev->irq;
priv->adapterRev = pci_rev;
pci_set_master(pdev);
pci_set_drvdata(pdev, dev);
} else { /* EISA card */
/* This is a hack. We need to know which board structure
* is suited for this adapter */
device_id = inw(ioaddr + EISA_ID2);
priv->is_eisa = 1;
if (device_id == 0x20F1) {
priv->adapter = &board_info[13]; /* NetFlex-3/E */
priv->adapterRev = 23; /* TLAN 2.3 */
} else {
priv->adapter = &board_info[14];
priv->adapterRev = 10; /* TLAN 1.0 */
}
dev->base_addr = ioaddr;
dev->irq = irq;
}
/* Kernel parameters */
if (dev->mem_start) {
priv->aui = dev->mem_start & 0x01;
priv->duplex = ((dev->mem_start & 0x06) == 0x06) ? 0 : (dev->mem_start & 0x06) >> 1;
priv->speed = ((dev->mem_start & 0x18) == 0x18) ? 0 : (dev->mem_start & 0x18) >> 3;
if (priv->speed == 0x1) {
priv->speed = TLAN_SPEED_10;
} else if (priv->speed == 0x2) {
priv->speed = TLAN_SPEED_100;
}
debug = priv->debug = dev->mem_end;
} else {
priv->aui = aui[boards_found];
priv->speed = speed[boards_found];
priv->duplex = duplex[boards_found];
priv->debug = debug;
}
/* This will be used when we get an adapter error from
* within our irq handler */
INIT_LIST_HEAD(&priv->tlan_tqueue.list);
priv->tlan_tqueue.sync = 0;
priv->tlan_tqueue.routine = (void *)(void*)TLan_tx_timeout;
priv->tlan_tqueue.data = dev;
spin_lock_init(&priv->lock);
if (TLan_Init(dev)) {
printk(KERN_ERR "TLAN: Could not register device.\n");
unregister_netdev(dev);
kfree(dev);
return -EAGAIN;
} else {
TLanDevicesInstalled++;
boards_found++;
/* pdev is NULL if this is an EISA device */
if (pdev)
tlan_have_pci++;
else {
priv->nextDevice = TLan_Eisa_Devices;
TLan_Eisa_Devices = dev;
tlan_have_eisa++;
}
printk(KERN_INFO "TLAN: %s irq=%2d, io=%04x, %s, Rev. %d\n",
dev->name,
(int) dev->irq,
(int) dev->base_addr,
priv->adapter->deviceLabel,
priv->adapterRev);
return 0;
}
}
static void TLan_Eisa_Cleanup(void)
{
struct net_device *dev;
TLanPrivateInfo *priv;
while( tlan_have_eisa ) {
dev = TLan_Eisa_Devices;
priv = dev->priv;
if (priv->dmaStorage) {
kfree(priv->dmaStorage);
}
release_region( dev->base_addr, 0x10);
unregister_netdev( dev );
TLan_Eisa_Devices = priv->nextDevice;
kfree( dev );
tlan_have_eisa--;
}
}
static void __exit tlan_exit(void)
{
pci_unregister_driver(&tlan_driver);
if (tlan_have_eisa)
TLan_Eisa_Cleanup();
kfree( TLanPadBuffer );
}
/* Module loading/unloading */
module_init(tlan_probe);
module_exit(tlan_exit);
/**************************************************************
* TLan_EisaProbe
*
* Returns: 0 on success, 1 otherwise
*
* Parms: None
*
*
* This functions probes for EISA devices and calls
* TLan_probe1 when one is found.
*
*************************************************************/
static void __init TLan_EisaProbe (void)
{
long ioaddr;
int rc = -ENODEV;
int irq;
u16 device_id;
if (!EISA_bus) {
TLAN_DBG(TLAN_DEBUG_PROBE, "No EISA bus present\n");
return;
}
/* Loop through all slots of the EISA bus */
for (ioaddr = 0x1000; ioaddr < 0x9000; ioaddr += 0x1000) {
TLAN_DBG(TLAN_DEBUG_PROBE,"EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xC80, inw(ioaddr + EISA_ID));
TLAN_DBG(TLAN_DEBUG_PROBE,"EISA_ID 0x%4x: 0x%4x\n", (int) ioaddr + 0xC82, inw(ioaddr + EISA_ID2));
TLAN_DBG(TLAN_DEBUG_PROBE, "Probing for EISA adapter at IO: 0x%4x : ",
(int) ioaddr);
if (request_region(ioaddr, 0x10, TLanSignature) == NULL)
goto out;
if (inw(ioaddr + EISA_ID) != 0x110E) {
release_region(ioaddr, 0x10);
goto out;
}
device_id = inw(ioaddr + EISA_ID2);
if (device_id != 0x20F1 && device_id != 0x40F1) {
release_region (ioaddr, 0x10);
goto out;
}
if (inb(ioaddr + EISA_CR) != 0x1) { /* Check if adapter is enabled */
release_region (ioaddr, 0x10);
goto out2;
}
if (debug == 0x10)
printk("Found one\n");
/* Get irq from board */
switch (inb(ioaddr + 0xCC0)) {
case(0x10):
irq=5;
break;
case(0x20):
irq=9;
break;
case(0x40):
irq=10;
break;
case(0x80):
irq=11;
break;
default:
goto out;
}
/* Setup the newly found eisa adapter */
rc = TLan_probe1( NULL, ioaddr, irq,
12, NULL);
continue;
out:
if (debug == 0x10)
printk("None found\n");
continue;
out2: if (debug == 0x10)
printk("Card found but it is not enabled, skipping\n");
continue;
}
} /* TLan_EisaProbe */
/***************************************************************
* TLan_Init
*
* Returns:
* 0 on success, error code otherwise.
* Parms:
* dev The structure of the device to be
* init'ed.
*
* This function completes the initialization of the
* device structure and driver. It reserves the IO
* addresses, allocates memory for the lists and bounce
* buffers, retrieves the MAC address from the eeprom
* and assignes the device's methods.
*
**************************************************************/
static int TLan_Init( struct net_device *dev )
{
int dma_size;
int err;
int i;
TLanPrivateInfo *priv;
priv = dev->priv;
if (!priv->is_eisa) /* EISA devices have already requested IO */
if (!request_region( dev->base_addr, 0x10, TLanSignature )) {
printk(KERN_ERR "TLAN: %s: IO port region 0x%lx size 0x%x in use.\n",
dev->name,
dev->base_addr,
0x10 );
return -EIO;
}
if ( bbuf ) {
dma_size = ( TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS )
* ( sizeof(TLanList) + TLAN_MAX_FRAME_SIZE );
} else {
dma_size = ( TLAN_NUM_RX_LISTS + TLAN_NUM_TX_LISTS )
* ( sizeof(TLanList) );
}
priv->dmaStorage = kmalloc(dma_size, GFP_KERNEL | GFP_DMA);
if ( priv->dmaStorage == NULL ) {
printk(KERN_ERR "TLAN: Could not allocate lists and buffers for %s.\n",
dev->name );
release_region( dev->base_addr, 0x10 );
return -ENOMEM;
}
memset( priv->dmaStorage, 0, dma_size );
priv->rxList = (TLanList *)
( ( ( (u32) priv->dmaStorage ) + 7 ) & 0xFFFFFFF8 );
priv->txList = priv->rxList + TLAN_NUM_RX_LISTS;
if ( bbuf ) {
priv->rxBuffer = (u8 *) ( priv->txList + TLAN_NUM_TX_LISTS );
priv->txBuffer = priv->rxBuffer
+ ( TLAN_NUM_RX_LISTS * TLAN_MAX_FRAME_SIZE );
}
err = 0;
for ( i = 0; i < 6 ; i++ )
err |= TLan_EeReadByte( dev,
(u8) priv->adapter->addrOfs + i,
(u8 *) &dev->dev_addr[i] );
if ( err ) {
printk(KERN_ERR "TLAN: %s: Error reading MAC from eeprom: %d\n",
dev->name,
err );
}
dev->addr_len = 6;
/* Device methods */
dev->open = &TLan_Open;
dev->hard_start_xmit = &TLan_StartTx;
dev->stop = &TLan_Close;
dev->get_stats = &TLan_GetStats;
dev->set_multicast_list = &TLan_SetMulticastList;
dev->do_ioctl = &TLan_ioctl;
dev->tx_timeout = &TLan_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
return 0;
} /* TLan_Init */
/***************************************************************
* TLan_Open
*
* Returns:
* 0 on success, error code otherwise.
* Parms:
* dev Structure of device to be opened.
*
* This routine puts the driver and TLAN adapter in a
* state where it is ready to send and receive packets.
* It allocates the IRQ, resets and brings the adapter
* out of reset, and allows interrupts. It also delays
* the startup for autonegotiation or sends a Rx GO
* command to the adapter, as appropriate.
*
**************************************************************/
static int TLan_Open( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
int err;
priv->tlanRev = TLan_DioRead8( dev->base_addr, TLAN_DEF_REVISION );
err = request_irq( dev->irq, TLan_HandleInterrupt, SA_SHIRQ, TLanSignature, dev );
if ( err ) {
printk(KERN_ERR "TLAN: Cannot open %s because IRQ %d is already in use.\n", dev->name, dev->irq );
return err;
}
init_timer(&priv->timer);
netif_start_queue(dev);
/* NOTE: It might not be necessary to read the stats before a
reset if you don't care what the values are.
*/
TLan_ResetLists( dev );
TLan_ReadAndClearStats( dev, TLAN_IGNORE );
TLan_ResetAdapter( dev );
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Opened. TLAN Chip Rev: %x\n", dev->name, priv->tlanRev );
return 0;
} /* TLan_Open */
/**************************************************************
* TLan_ioctl
*
* Returns:
* 0 on success, error code otherwise
* Params:
* dev structure of device to receive ioctl.
*
* rq ifreq structure to hold userspace data.
*
* cmd ioctl command.
*
*
*************************************************************/
static int TLan_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
TLanPrivateInfo *priv = dev->priv;
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&rq->ifr_data;
u32 phy = priv->phy[priv->phyNum];
if (!priv->phyOnline)
return -EAGAIN;
switch(cmd) {
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */
data->phy_id = phy;
case SIOCGMIIREG: /* Read MII PHY register. */
case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
TLan_MiiReadReg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, &data->val_out);
return 0;
case SIOCSMIIREG: /* Write MII PHY register. */
case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
TLan_MiiWriteReg(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
return 0;
default:
return -EOPNOTSUPP;
}
} /* tlan_ioctl */
/***************************************************************
* TLan_tx_timeout
*
* Returns: nothing
*
* Params:
* dev structure of device which timed out
* during transmit.
*
**************************************************************/
static void TLan_tx_timeout(struct net_device *dev)
{
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Transmit timed out.\n", dev->name);
/* Ok so we timed out, lets see what we can do about it...*/
TLan_FreeLists( dev );
TLan_ResetLists( dev );
TLan_ReadAndClearStats( dev, TLAN_IGNORE );
TLan_ResetAdapter( dev );
dev->trans_start = jiffies;
netif_wake_queue( dev );
}
/***************************************************************
* TLan_StartTx
*
* Returns:
* 0 on success, non-zero on failure.
* Parms:
* skb A pointer to the sk_buff containing the
* frame to be sent.
* dev The device to send the data on.
*
* This function adds a frame to the Tx list to be sent
* ASAP. First it verifies that the adapter is ready and
* there is room in the queue. Then it sets up the next
* available list, copies the frame to the corresponding
* buffer. If the adapter Tx channel is idle, it gives
* the adapter a Tx Go command on the list, otherwise it
* sets the forward address of the previous list to point
* to this one. Then it frees the sk_buff.
*
**************************************************************/
static int TLan_StartTx( struct sk_buff *skb, struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
TLanList *tail_list;
u8 *tail_buffer;
int pad;
unsigned long flags;
if ( ! priv->phyOnline ) {
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s PHY is not ready\n", dev->name );
dev_kfree_skb_any(skb);
return 0;
}
tail_list = priv->txList + priv->txTail;
if ( tail_list->cStat != TLAN_CSTAT_UNUSED ) {
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s is busy (Head=%d Tail=%d)\n", dev->name, priv->txHead, priv->txTail );
netif_stop_queue(dev);
priv->txBusyCount++;
return 1;
}
tail_list->forward = 0;
if ( bbuf ) {
tail_buffer = priv->txBuffer + ( priv->txTail * TLAN_MAX_FRAME_SIZE );
memcpy( tail_buffer, skb->data, skb->len );
} else {
tail_list->buffer[0].address = virt_to_bus( skb->data );
tail_list->buffer[9].address = (u32) skb;
}
pad = TLAN_MIN_FRAME_SIZE - skb->len;
if ( pad > 0 ) {
tail_list->frameSize = (u16) skb->len + pad;
tail_list->buffer[0].count = (u32) skb->len;
tail_list->buffer[1].count = TLAN_LAST_BUFFER | (u32) pad;
tail_list->buffer[1].address = virt_to_bus( TLanPadBuffer );
} else {
tail_list->frameSize = (u16) skb->len;
tail_list->buffer[0].count = TLAN_LAST_BUFFER | (u32) skb->len;
tail_list->buffer[1].count = 0;
tail_list->buffer[1].address = 0;
}
spin_lock_irqsave(&priv->lock, flags);
tail_list->cStat = TLAN_CSTAT_READY;
if ( ! priv->txInProgress ) {
priv->txInProgress = 1;
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Starting TX on buffer %d\n", priv->txTail );
outl( virt_to_bus( tail_list ), dev->base_addr + TLAN_CH_PARM );
outl( TLAN_HC_GO, dev->base_addr + TLAN_HOST_CMD );
} else {
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Adding buffer %d to TX channel\n", priv->txTail );
if ( priv->txTail == 0 ) {
( priv->txList + ( TLAN_NUM_TX_LISTS - 1 ) )->forward = virt_to_bus( tail_list );
} else {
( priv->txList + ( priv->txTail - 1 ) )->forward = virt_to_bus( tail_list );
}
}
spin_unlock_irqrestore(&priv->lock, flags);
CIRC_INC( priv->txTail, TLAN_NUM_TX_LISTS );
if ( bbuf )
dev_kfree_skb_any(skb);
dev->trans_start = jiffies;
return 0;
} /* TLan_StartTx */
/***************************************************************
* TLan_HandleInterrupt
*
* Returns:
* Nothing
* Parms:
* irq The line on which the interrupt
* occurred.
* dev_id A pointer to the device assigned to
* this irq line.
* regs ???
*
* This function handles an interrupt generated by its
* assigned TLAN adapter. The function deactivates
* interrupts on its adapter, records the type of
* interrupt, executes the appropriate subhandler, and
* acknowdges the interrupt to the adapter (thus
* re-enabling adapter interrupts.
*
**************************************************************/
static void TLan_HandleInterrupt(int irq, void *dev_id, struct pt_regs *regs)
{
u32 ack;
struct net_device *dev;
u32 host_cmd;
u16 host_int;
int type;
TLanPrivateInfo *priv;
dev = dev_id;
priv = dev->priv;
spin_lock(&priv->lock);
host_int = inw( dev->base_addr + TLAN_HOST_INT );
outw( host_int, dev->base_addr + TLAN_HOST_INT );
type = ( host_int & TLAN_HI_IT_MASK ) >> 2;
ack = TLanIntVector[type]( dev, host_int );
if ( ack ) {
host_cmd = TLAN_HC_ACK | ack | ( type << 18 );
outl( host_cmd, dev->base_addr + TLAN_HOST_CMD );
}
spin_unlock(&priv->lock);
} /* TLan_HandleInterrupts */
/***************************************************************
* TLan_Close
*
* Returns:
* An error code.
* Parms:
* dev The device structure of the device to
* close.
*
* This function shuts down the adapter. It records any
* stats, puts the adapter into reset state, deactivates
* its time as needed, and frees the irq it is using.
*
**************************************************************/
static int TLan_Close(struct net_device *dev)
{
TLanPrivateInfo *priv = dev->priv;
netif_stop_queue(dev);
priv->neg_be_verbose = 0;
TLan_ReadAndClearStats( dev, TLAN_RECORD );
outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD );
if ( priv->timer.function != NULL ) {
del_timer_sync( &priv->timer );
priv->timer.function = NULL;
}
free_irq( dev->irq, dev );
TLan_FreeLists( dev );
TLAN_DBG( TLAN_DEBUG_GNRL, "Device %s closed.\n", dev->name );
return 0;
} /* TLan_Close */
/***************************************************************
* TLan_GetStats
*
* Returns:
* A pointer to the device's statistics structure.
* Parms:
* dev The device structure to return the
* stats for.
*
* This function updates the devices statistics by reading
* the TLAN chip's onboard registers. Then it returns the
* address of the statistics structure.
*
**************************************************************/
static struct net_device_stats *TLan_GetStats( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
int i;
/* Should only read stats if open ? */
TLan_ReadAndClearStats( dev, TLAN_RECORD );
TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: %s EOC count = %d\n", dev->name, priv->rxEocCount );
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: %s Busy count = %d\n", dev->name, priv->txBusyCount );
if ( debug & TLAN_DEBUG_GNRL ) {
TLan_PrintDio( dev->base_addr );
TLan_PhyPrint( dev );
}
if ( debug & TLAN_DEBUG_LIST ) {
for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ )
TLan_PrintList( priv->rxList + i, "RX", i );
for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ )
TLan_PrintList( priv->txList + i, "TX", i );
}
return ( &( (TLanPrivateInfo *) dev->priv )->stats );
} /* TLan_GetStats */
/***************************************************************
* TLan_SetMulticastList
*
* Returns:
* Nothing
* Parms:
* dev The device structure to set the
* multicast list for.
*
* This function sets the TLAN adaptor to various receive
* modes. If the IFF_PROMISC flag is set, promiscuous
* mode is acitviated. Otherwise, promiscuous mode is
* turned off. If the IFF_ALLMULTI flag is set, then
* the hash table is set to receive all group addresses.
* Otherwise, the first three multicast addresses are
* stored in AREG_1-3, and the rest are selected via the
* hash table, as necessary.
*
**************************************************************/
static void TLan_SetMulticastList( struct net_device *dev )
{
struct dev_mc_list *dmi = dev->mc_list;
u32 hash1 = 0;
u32 hash2 = 0;
int i;
u32 offset;
u8 tmp;
if ( dev->flags & IFF_PROMISC ) {
tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD );
TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp | TLAN_NET_CMD_CAF );
} else {
tmp = TLan_DioRead8( dev->base_addr, TLAN_NET_CMD );
TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, tmp & ~TLAN_NET_CMD_CAF );
if ( dev->flags & IFF_ALLMULTI ) {
for ( i = 0; i < 3; i++ )
TLan_SetMac( dev, i + 1, NULL );
TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, 0xFFFFFFFF );
TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, 0xFFFFFFFF );
} else {
for ( i = 0; i < dev->mc_count; i++ ) {
if ( i < 3 ) {
TLan_SetMac( dev, i + 1, (char *) &dmi->dmi_addr );
} else {
offset = TLan_HashFunc( (u8 *) &dmi->dmi_addr );
if ( offset < 32 )
hash1 |= ( 1 << offset );
else
hash2 |= ( 1 << ( offset - 32 ) );
}
dmi = dmi->next;
}
for ( ; i < 3; i++ )
TLan_SetMac( dev, i + 1, NULL );
TLan_DioWrite32( dev->base_addr, TLAN_HASH_1, hash1 );
TLan_DioWrite32( dev->base_addr, TLAN_HASH_2, hash2 );
}
}
} /* TLan_SetMulticastList */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Interrupt Vectors and Table
Please see Chap. 4, "Interrupt Handling" of the "ThunderLAN
Programmer's Guide" for more informations on handling interrupts
generated by TLAN based adapters.
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_HandleInvalid
*
* Returns:
* 0
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles invalid interrupts. This should
* never happen unless some other adapter is trying to use
* the IRQ line assigned to the device.
*
**************************************************************/
u32 TLan_HandleInvalid( struct net_device *dev, u16 host_int )
{
/* printk( "TLAN: Invalid interrupt on %s.\n", dev->name ); */
return 0;
} /* TLan_HandleInvalid */
/***************************************************************
* TLan_HandleTxEOF
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles Tx EOF interrupts which are raised
* by the adapter when it has completed sending the
* contents of a buffer. If detemines which list/buffer
* was completed and resets it. If the buffer was the last
* in the channel (EOC), then the function checks to see if
* another buffer is ready to send, and if so, sends a Tx
* Go command. Finally, the driver activates/continues the
* activity LED.
*
**************************************************************/
u32 TLan_HandleTxEOF( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = dev->priv;
int eoc = 0;
TLanList *head_list;
u32 ack = 0;
u16 tmpCStat;
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOF (Head=%d Tail=%d)\n", priv->txHead, priv->txTail );
head_list = priv->txList + priv->txHead;
while (((tmpCStat = head_list->cStat ) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) {
ack++;
if ( ! bbuf ) {
dev_kfree_skb_any( (struct sk_buff *) head_list->buffer[9].address );
head_list->buffer[9].address = 0;
}
if ( tmpCStat & TLAN_CSTAT_EOC )
eoc = 1;
priv->stats.tx_bytes += head_list->frameSize;
head_list->cStat = TLAN_CSTAT_UNUSED;
netif_start_queue(dev);
CIRC_INC( priv->txHead, TLAN_NUM_TX_LISTS );
head_list = priv->txList + priv->txHead;
}
if (!ack)
printk(KERN_INFO "TLAN: Received interrupt for uncompleted TX frame.\n");
if ( eoc ) {
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOC (Head=%d Tail=%d)\n", priv->txHead, priv->txTail );
head_list = priv->txList + priv->txHead;
if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) {
outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM );
ack |= TLAN_HC_GO;
} else {
priv->txInProgress = 0;
}
}
if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) {
TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT );
if ( priv->timer.function == NULL ) {
priv->timer.function = &TLan_Timer;
priv->timer.data = (unsigned long) dev;
priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY;
priv->timerSetAt = jiffies;
priv->timerType = TLAN_TIMER_ACTIVITY;
add_timer(&priv->timer);
} else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) {
priv->timerSetAt = jiffies;
}
}
return ack;
} /* TLan_HandleTxEOF */
/***************************************************************
* TLan_HandleStatOverflow
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles the Statistics Overflow interrupt
* which means that one or more of the TLAN statistics
* registers has reached 1/2 capacity and needs to be read.
*
**************************************************************/
u32 TLan_HandleStatOverflow( struct net_device *dev, u16 host_int )
{
TLan_ReadAndClearStats( dev, TLAN_RECORD );
return 1;
} /* TLan_HandleStatOverflow */
/***************************************************************
* TLan_HandleRxEOF
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles the Rx EOF interrupt which
* indicates a frame has been received by the adapter from
* the net and the frame has been transferred to memory.
* The function determines the bounce buffer the frame has
* been loaded into, creates a new sk_buff big enough to
* hold the frame, and sends it to protocol stack. It
* then resets the used buffer and appends it to the end
* of the list. If the frame was the last in the Rx
* channel (EOC), the function restarts the receive channel
* by sending an Rx Go command to the adapter. Then it
* activates/continues the activity LED.
*
**************************************************************/
u32 TLan_HandleRxEOF( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = dev->priv;
u32 ack = 0;
int eoc = 0;
u8 *head_buffer;
TLanList *head_list;
struct sk_buff *skb;
TLanList *tail_list;
void *t;
u32 frameSize;
u16 tmpCStat;
TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOF (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail );
head_list = priv->rxList + priv->rxHead;
while (((tmpCStat = head_list->cStat) & TLAN_CSTAT_FRM_CMP) && (ack < 255)) {
frameSize = head_list->frameSize;
ack++;
if (tmpCStat & TLAN_CSTAT_EOC)
eoc = 1;
if (bbuf) {
skb = dev_alloc_skb(frameSize + 7);
if (skb == NULL)
printk(KERN_INFO "TLAN: Couldn't allocate memory for received data.\n");
else {
head_buffer = priv->rxBuffer + (priv->rxHead * TLAN_MAX_FRAME_SIZE);
skb->dev = dev;
skb_reserve(skb, 2);
t = (void *) skb_put(skb, frameSize);
priv->stats.rx_bytes += head_list->frameSize;
memcpy( t, head_buffer, frameSize );
skb->protocol = eth_type_trans( skb, dev );
netif_rx( skb );
}
} else {
struct sk_buff *new_skb;
/*
* I changed the algorithm here. What we now do
* is allocate the new frame. If this fails we
* simply recycle the frame.
*/
new_skb = dev_alloc_skb( TLAN_MAX_FRAME_SIZE + 7 );
if ( new_skb != NULL ) {
/* If this ever happened it would be a problem */
/* not any more - ac */
skb = (struct sk_buff *) head_list->buffer[9].address;
skb_trim( skb, frameSize );
priv->stats.rx_bytes += frameSize;
skb->protocol = eth_type_trans( skb, dev );
netif_rx( skb );
new_skb->dev = dev;
skb_reserve( new_skb, 2 );
t = (void *) skb_put( new_skb, TLAN_MAX_FRAME_SIZE );
head_list->buffer[0].address = virt_to_bus( t );
head_list->buffer[8].address = (u32) t;
head_list->buffer[9].address = (u32) new_skb;
} else
printk(KERN_WARNING "TLAN: Couldn't allocate memory for received data.\n" );
}
head_list->forward = 0;
head_list->cStat = 0;
tail_list = priv->rxList + priv->rxTail;
tail_list->forward = virt_to_bus( head_list );
CIRC_INC( priv->rxHead, TLAN_NUM_RX_LISTS );
CIRC_INC( priv->rxTail, TLAN_NUM_RX_LISTS );
head_list = priv->rxList + priv->rxHead;
}
if (!ack)
printk(KERN_INFO "TLAN: Received interrupt for uncompleted RX frame.\n");
if ( eoc ) {
TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOC (Head=%d Tail=%d)\n", priv->rxHead, priv->rxTail );
head_list = priv->rxList + priv->rxHead;
outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM );
ack |= TLAN_HC_GO | TLAN_HC_RT;
priv->rxEocCount++;
}
if ( priv->adapter->flags & TLAN_ADAPTER_ACTIVITY_LED ) {
TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK | TLAN_LED_ACT );
if ( priv->timer.function == NULL ) {
priv->timer.function = &TLan_Timer;
priv->timer.data = (unsigned long) dev;
priv->timer.expires = jiffies + TLAN_TIMER_ACT_DELAY;
priv->timerSetAt = jiffies;
priv->timerType = TLAN_TIMER_ACTIVITY;
add_timer(&priv->timer);
} else if ( priv->timerType == TLAN_TIMER_ACTIVITY ) {
priv->timerSetAt = jiffies;
}
}
dev->last_rx = jiffies;
return ack;
} /* TLan_HandleRxEOF */
/***************************************************************
* TLan_HandleDummy
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles the Dummy interrupt, which is
* raised whenever a test interrupt is generated by setting
* the Req_Int bit of HOST_CMD to 1.
*
**************************************************************/
u32 TLan_HandleDummy( struct net_device *dev, u16 host_int )
{
printk( "TLAN: Test interrupt on %s.\n", dev->name );
return 1;
} /* TLan_HandleDummy */
/***************************************************************
* TLan_HandleTxEOC
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This driver is structured to determine EOC occurances by
* reading the CSTAT member of the list structure. Tx EOC
* interrupts are disabled via the DIO INTDIS register.
* However, TLAN chips before revision 3.0 didn't have this
* functionality, so process EOC events if this is the
* case.
*
**************************************************************/
u32 TLan_HandleTxEOC( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = dev->priv;
TLanList *head_list;
u32 ack = 1;
host_int = 0;
if ( priv->tlanRev < 0x30 ) {
TLAN_DBG( TLAN_DEBUG_TX, "TRANSMIT: Handling TX EOC (Head=%d Tail=%d) -- IRQ\n", priv->txHead, priv->txTail );
head_list = priv->txList + priv->txHead;
if ( ( head_list->cStat & TLAN_CSTAT_READY ) == TLAN_CSTAT_READY ) {
netif_stop_queue(dev);
outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM );
ack |= TLAN_HC_GO;
} else {
priv->txInProgress = 0;
}
}
return ack;
} /* TLan_HandleTxEOC */
/***************************************************************
* TLan_HandleStatusCheck
*
* Returns:
* 0 if Adapter check, 1 if Network Status check.
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This function handles Adapter Check/Network Status
* interrupts generated by the adapter. It checks the
* vector in the HOST_INT register to determine if it is
* an Adapter Check interrupt. If so, it resets the
* adapter. Otherwise it clears the status registers
* and services the PHY.
*
**************************************************************/
u32 TLan_HandleStatusCheck( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = dev->priv;
u32 ack;
u32 error;
u8 net_sts;
u32 phy;
u16 tlphy_ctl;
u16 tlphy_sts;
ack = 1;
if ( host_int & TLAN_HI_IV_MASK ) {
netif_stop_queue( dev );
error = inl( dev->base_addr + TLAN_CH_PARM );
printk( "TLAN: %s: Adaptor Error = 0x%x\n", dev->name, error );
TLan_ReadAndClearStats( dev, TLAN_RECORD );
outl( TLAN_HC_AD_RST, dev->base_addr + TLAN_HOST_CMD );
queue_task(&priv->tlan_tqueue, &tq_immediate);
mark_bh(IMMEDIATE_BH);
netif_wake_queue(dev);
ack = 0;
} else {
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Status Check\n", dev->name );
phy = priv->phy[priv->phyNum];
net_sts = TLan_DioRead8( dev->base_addr, TLAN_NET_STS );
if ( net_sts ) {
TLan_DioWrite8( dev->base_addr, TLAN_NET_STS, net_sts );
TLAN_DBG( TLAN_DEBUG_GNRL, "%s: Net_Sts = %x\n", dev->name, (unsigned) net_sts );
}
if ( ( net_sts & TLAN_NET_STS_MIRQ ) && ( priv->phyNum == 0 ) ) {
TLan_MiiReadReg( dev, phy, TLAN_TLPHY_STS, &tlphy_sts );
TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl );
if ( ! ( tlphy_sts & TLAN_TS_POLOK ) && ! ( tlphy_ctl & TLAN_TC_SWAPOL ) ) {
tlphy_ctl |= TLAN_TC_SWAPOL;
TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl);
} else if ( ( tlphy_sts & TLAN_TS_POLOK ) && ( tlphy_ctl & TLAN_TC_SWAPOL ) ) {
tlphy_ctl &= ~TLAN_TC_SWAPOL;
TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl);
}
if (debug) {
TLan_PhyPrint( dev );
}
}
}
return ack;
} /* TLan_HandleStatusCheck */
/***************************************************************
* TLan_HandleRxEOC
*
* Returns:
* 1
* Parms:
* dev Device assigned the IRQ that was
* raised.
* host_int The contents of the HOST_INT
* port.
*
* This driver is structured to determine EOC occurances by
* reading the CSTAT member of the list structure. Rx EOC
* interrupts are disabled via the DIO INTDIS register.
* However, TLAN chips before revision 3.0 didn't have this
* CSTAT member or a INTDIS register, so if this chip is
* pre-3.0, process EOC interrupts normally.
*
**************************************************************/
u32 TLan_HandleRxEOC( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = dev->priv;
TLanList *head_list;
u32 ack = 1;
if ( priv->tlanRev < 0x30 ) {
TLAN_DBG( TLAN_DEBUG_RX, "RECEIVE: Handling RX EOC (Head=%d Tail=%d) -- IRQ\n", priv->rxHead, priv->rxTail );
head_list = priv->rxList + priv->rxHead;
outl( virt_to_bus( head_list ), dev->base_addr + TLAN_CH_PARM );
ack |= TLAN_HC_GO | TLAN_HC_RT;
priv->rxEocCount++;
}
return ack;
} /* TLan_HandleRxEOC */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Timer Function
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_Timer
*
* Returns:
* Nothing
* Parms:
* data A value given to add timer when
* add_timer was called.
*
* This function handles timed functionality for the
* TLAN driver. The two current timer uses are for
* delaying for autonegotionation and driving the ACT LED.
* - Autonegotiation requires being allowed about
* 2 1/2 seconds before attempting to transmit a
* packet. It would be a very bad thing to hang
* the kernel this long, so the driver doesn't
* allow transmission 'til after this time, for
* certain PHYs. It would be much nicer if all
* PHYs were interrupt-capable like the internal
* PHY.
* - The ACT LED, which shows adapter activity, is
* driven by the driver, and so must be left on
* for a short period to power up the LED so it
* can be seen. This delay can be changed by
* changing the TLAN_TIMER_ACT_DELAY in tlan.h,
* if desired. 100 ms produces a slightly
* sluggish response.
*
**************************************************************/
void TLan_Timer( unsigned long data )
{
struct net_device *dev = (struct net_device *) data;
TLanPrivateInfo *priv = dev->priv;
u32 elapsed;
unsigned long flags = 0;
priv->timer.function = NULL;
switch ( priv->timerType ) {
#ifdef MONITOR
case TLAN_TIMER_LINK_BEAT:
TLan_PhyMonitor( dev );
break;
#endif
case TLAN_TIMER_PHY_PDOWN:
TLan_PhyPowerDown( dev );
break;
case TLAN_TIMER_PHY_PUP:
TLan_PhyPowerUp( dev );
break;
case TLAN_TIMER_PHY_RESET:
TLan_PhyReset( dev );
break;
case TLAN_TIMER_PHY_START_LINK:
TLan_PhyStartLink( dev );
break;
case TLAN_TIMER_PHY_FINISH_AN:
TLan_PhyFinishAutoNeg( dev );
break;
case TLAN_TIMER_FINISH_RESET:
TLan_FinishReset( dev );
break;
case TLAN_TIMER_ACTIVITY:
spin_lock_irqsave(&priv->lock, flags);
if ( priv->timer.function == NULL ) {
elapsed = jiffies - priv->timerSetAt;
if ( elapsed >= TLAN_TIMER_ACT_DELAY ) {
TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK );
} else {
priv->timer.function = &TLan_Timer;
priv->timer.expires = priv->timerSetAt + TLAN_TIMER_ACT_DELAY;
spin_unlock_irqrestore(&priv->lock, flags);
add_timer( &priv->timer );
break;
}
}
spin_unlock_irqrestore(&priv->lock, flags);
break;
default:
break;
}
} /* TLan_Timer */
/*****************************************************************************
******************************************************************************
ThunderLAN Driver Adapter Related Routines
******************************************************************************
*****************************************************************************/
/***************************************************************
* TLan_ResetLists
*
* Returns:
* Nothing
* Parms:
* dev The device structure with the list
* stuctures to be reset.
*
* This routine sets the variables associated with managing
* the TLAN lists to their initial values.
*
**************************************************************/
void TLan_ResetLists( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
int i;
TLanList *list;
struct sk_buff *skb;
void *t = NULL;
priv->txHead = 0;
priv->txTail = 0;
for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) {
list = priv->txList + i;
list->cStat = TLAN_CSTAT_UNUSED;
if ( bbuf ) {
list->buffer[0].address = virt_to_bus( priv->txBuffer + ( i * TLAN_MAX_FRAME_SIZE ) );
} else {
list->buffer[0].address = 0;
}
list->buffer[2].count = 0;
list->buffer[2].address = 0;
list->buffer[9].address = 0;
}
priv->rxHead = 0;
priv->rxTail = TLAN_NUM_RX_LISTS - 1;
for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) {
list = priv->rxList + i;
list->cStat = TLAN_CSTAT_READY;
list->frameSize = TLAN_MAX_FRAME_SIZE;
list->buffer[0].count = TLAN_MAX_FRAME_SIZE | TLAN_LAST_BUFFER;
if ( bbuf ) {
list->buffer[0].address = virt_to_bus( priv->rxBuffer + ( i * TLAN_MAX_FRAME_SIZE ) );
} else {
skb = dev_alloc_skb( TLAN_MAX_FRAME_SIZE + 7 );
if ( skb == NULL ) {
printk( "TLAN: Couldn't allocate memory for received data.\n" );
/* If this ever happened it would be a problem */
} else {
skb->dev = dev;
skb_reserve( skb, 2 );
t = (void *) skb_put( skb, TLAN_MAX_FRAME_SIZE );
}
list->buffer[0].address = virt_to_bus( t );
list->buffer[8].address = (u32) t;
list->buffer[9].address = (u32) skb;
}
list->buffer[1].count = 0;
list->buffer[1].address = 0;
if ( i < TLAN_NUM_RX_LISTS - 1 )
list->forward = virt_to_bus( list + 1 );
else
list->forward = 0;
}
} /* TLan_ResetLists */
void TLan_FreeLists( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
int i;
TLanList *list;
struct sk_buff *skb;
if ( ! bbuf ) {
for ( i = 0; i < TLAN_NUM_TX_LISTS; i++ ) {
list = priv->txList + i;
skb = (struct sk_buff *) list->buffer[9].address;
if ( skb ) {
dev_kfree_skb_any( skb );
list->buffer[9].address = 0;
}
}
for ( i = 0; i < TLAN_NUM_RX_LISTS; i++ ) {
list = priv->rxList + i;
skb = (struct sk_buff *) list->buffer[9].address;
if ( skb ) {
dev_kfree_skb_any( skb );
list->buffer[9].address = 0;
}
}
}
} /* TLan_FreeLists */
/***************************************************************
* TLan_PrintDio
*
* Returns:
* Nothing
* Parms:
* io_base Base IO port of the device of
* which to print DIO registers.
*
* This function prints out all the internal (DIO)
* registers of a TLAN chip.
*
**************************************************************/
void TLan_PrintDio( u16 io_base )
{
u32 data0, data1;
int i;
printk( "TLAN: Contents of internal registers for io base 0x%04hx.\n", io_base );
printk( "TLAN: Off. +0 +4\n" );
for ( i = 0; i < 0x4C; i+= 8 ) {
data0 = TLan_DioRead32( io_base, i );
data1 = TLan_DioRead32( io_base, i + 0x4 );
printk( "TLAN: 0x%02x 0x%08x 0x%08x\n", i, data0, data1 );
}
} /* TLan_PrintDio */
/***************************************************************
* TLan_PrintList
*
* Returns:
* Nothing
* Parms:
* list A pointer to the TLanList structure to
* be printed.
* type A string to designate type of list,
* "Rx" or "Tx".
* num The index of the list.
*
* This function prints out the contents of the list
* pointed to by the list parameter.
*
**************************************************************/
void TLan_PrintList( TLanList *list, char *type, int num)
{
int i;
printk( "TLAN: %s List %d at 0x%08x\n", type, num, (u32) list );
printk( "TLAN: Forward = 0x%08x\n", list->forward );
printk( "TLAN: CSTAT = 0x%04hx\n", list->cStat );
printk( "TLAN: Frame Size = 0x%04hx\n", list->frameSize );
/* for ( i = 0; i < 10; i++ ) { */
for ( i = 0; i < 2; i++ ) {
printk( "TLAN: Buffer[%d].count, addr = 0x%08x, 0x%08x\n", i, list->buffer[i].count, list->buffer[i].address );
}
} /* TLan_PrintList */
/***************************************************************
* TLan_ReadAndClearStats
*
* Returns:
* Nothing
* Parms:
* dev Pointer to device structure of adapter
* to which to read stats.
* record Flag indicating whether to add
*
* This functions reads all the internal status registers
* of the TLAN chip, which clears them as a side effect.
* It then either adds the values to the device's status
* struct, or discards them, depending on whether record
* is TLAN_RECORD (!=0) or TLAN_IGNORE (==0).
*
**************************************************************/
void TLan_ReadAndClearStats( struct net_device *dev, int record )
{
TLanPrivateInfo *priv = dev->priv;
u32 tx_good, tx_under;
u32 rx_good, rx_over;
u32 def_tx, crc, code;
u32 multi_col, single_col;
u32 excess_col, late_col, loss;
outw( TLAN_GOOD_TX_FRMS, dev->base_addr + TLAN_DIO_ADR );
tx_good = inb( dev->base_addr + TLAN_DIO_DATA );
tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8;
tx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16;
tx_under = inb( dev->base_addr + TLAN_DIO_DATA + 3 );
outw( TLAN_GOOD_RX_FRMS, dev->base_addr + TLAN_DIO_ADR );
rx_good = inb( dev->base_addr + TLAN_DIO_DATA );
rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8;
rx_good += inb( dev->base_addr + TLAN_DIO_DATA + 2 ) << 16;
rx_over = inb( dev->base_addr + TLAN_DIO_DATA + 3 );
outw( TLAN_DEFERRED_TX, dev->base_addr + TLAN_DIO_ADR );
def_tx = inb( dev->base_addr + TLAN_DIO_DATA );
def_tx += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8;
crc = inb( dev->base_addr + TLAN_DIO_DATA + 2 );
code = inb( dev->base_addr + TLAN_DIO_DATA + 3 );
outw( TLAN_MULTICOL_FRMS, dev->base_addr + TLAN_DIO_ADR );
multi_col = inb( dev->base_addr + TLAN_DIO_DATA );
multi_col += inb( dev->base_addr + TLAN_DIO_DATA + 1 ) << 8;
single_col = inb( dev->base_addr + TLAN_DIO_DATA + 2 );
single_col += inb( dev->base_addr + TLAN_DIO_DATA + 3 ) << 8;
outw( TLAN_EXCESSCOL_FRMS, dev->base_addr + TLAN_DIO_ADR );
excess_col = inb( dev->base_addr + TLAN_DIO_DATA );
late_col = inb( dev->base_addr + TLAN_DIO_DATA + 1 );
loss = inb( dev->base_addr + TLAN_DIO_DATA + 2 );
if ( record ) {
priv->stats.rx_packets += rx_good;
priv->stats.rx_errors += rx_over + crc + code;
priv->stats.tx_packets += tx_good;
priv->stats.tx_errors += tx_under + loss;
priv->stats.collisions += multi_col + single_col + excess_col + late_col;
priv->stats.rx_over_errors += rx_over;
priv->stats.rx_crc_errors += crc;
priv->stats.rx_frame_errors += code;
priv->stats.tx_aborted_errors += tx_under;
priv->stats.tx_carrier_errors += loss;
}
} /* TLan_ReadAndClearStats */
/***************************************************************
* TLan_Reset
*
* Returns:
* 0
* Parms:
* dev Pointer to device structure of adapter
* to be reset.
*
* This function resets the adapter and it's physical
* device. See Chap. 3, pp. 9-10 of the "ThunderLAN
* Programmer's Guide" for details. The routine tries to
* implement what is detailed there, though adjustments
* have been made.
*
**************************************************************/
void
TLan_ResetAdapter( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
int i;
u32 addr;
u32 data;
u8 data8;
priv->tlanFullDuplex = FALSE;
priv->phyOnline=0;
/* 1. Assert reset bit. */
data = inl(dev->base_addr + TLAN_HOST_CMD);
data |= TLAN_HC_AD_RST;
outl(data, dev->base_addr + TLAN_HOST_CMD);
udelay(1000);
/* 2. Turn off interrupts. ( Probably isn't necessary ) */
data = inl(dev->base_addr + TLAN_HOST_CMD);
data |= TLAN_HC_INT_OFF;
outl(data, dev->base_addr + TLAN_HOST_CMD);
/* 3. Clear AREGs and HASHs. */
for ( i = TLAN_AREG_0; i <= TLAN_HASH_2; i += 4 ) {
TLan_DioWrite32( dev->base_addr, (u16) i, 0 );
}
/* 4. Setup NetConfig register. */
data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN | TLAN_NET_CFG_PHY_EN;
TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data );
/* 5. Load Ld_Tmr and Ld_Thr in HOST_CMD. */
outl( TLAN_HC_LD_TMR | 0x3f, dev->base_addr + TLAN_HOST_CMD );
outl( TLAN_HC_LD_THR | 0x9, dev->base_addr + TLAN_HOST_CMD );
/* 6. Unreset the MII by setting NMRST (in NetSio) to 1. */
outw( TLAN_NET_SIO, dev->base_addr + TLAN_DIO_ADR );
addr = dev->base_addr + TLAN_DIO_DATA + TLAN_NET_SIO;
TLan_SetBit( TLAN_NET_SIO_NMRST, addr );
/* 7. Setup the remaining registers. */
if ( priv->tlanRev >= 0x30 ) {
data8 = TLAN_ID_TX_EOC | TLAN_ID_RX_EOC;
TLan_DioWrite8( dev->base_addr, TLAN_INT_DIS, data8 );
}
TLan_PhyDetect( dev );
data = TLAN_NET_CFG_1FRAG | TLAN_NET_CFG_1CHAN;
if ( priv->adapter->flags & TLAN_ADAPTER_BIT_RATE_PHY ) {
data |= TLAN_NET_CFG_BIT;
if ( priv->aui == 1 ) {
TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x0a );
} else if ( priv->duplex == TLAN_DUPLEX_FULL ) {
TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x00 );
priv->tlanFullDuplex = TRUE;
} else {
TLan_DioWrite8( dev->base_addr, TLAN_ACOMMIT, 0x08 );
}
}
if ( priv->phyNum == 0 ) {
data |= TLAN_NET_CFG_PHY_EN;
}
TLan_DioWrite16( dev->base_addr, TLAN_NET_CONFIG, (u16) data );
if ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) {
TLan_FinishReset( dev );
} else {
TLan_PhyPowerDown( dev );
}
} /* TLan_ResetAdapter */
void
TLan_FinishReset( struct net_device *dev )
{
TLanPrivateInfo *priv = dev->priv;
u8 data;
u32 phy;
u8 sio;
u16 status;
u16 partner;
u16 tlphy_ctl;
u16 tlphy_par;
u16 tlphy_id1, tlphy_id2;
int i;
phy = priv->phy[priv->phyNum];
data = TLAN_NET_CMD_NRESET | TLAN_NET_CMD_NWRAP;
if ( priv->tlanFullDuplex ) {
data |= TLAN_NET_CMD_DUPLEX;
}
TLan_DioWrite8( dev->base_addr, TLAN_NET_CMD, data );
data = TLAN_NET_MASK_MASK4 | TLAN_NET_MASK_MASK5;
if ( priv->phyNum == 0 ) {
data |= TLAN_NET_MASK_MASK7;
}
TLan_DioWrite8( dev->base_addr, TLAN_NET_MASK, data );
TLan_DioWrite16( dev->base_addr, TLAN_MAX_RX, ((1536)+7)&~7 );
TLan_MiiReadReg( dev, phy, MII_GEN_ID_HI, &tlphy_id1 );
TLan_MiiReadReg( dev, phy, MII_GEN_ID_LO, &tlphy_id2 );
if ( ( priv->adapter->flags & TLAN_ADAPTER_UNMANAGED_PHY ) || ( priv->aui ) ) {
status = MII_GS_LINK;
printk( "TLAN: %s: Link forced.\n", dev->name );
} else {
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status );
udelay( 1000 );
TLan_MiiReadReg( dev, phy, MII_GEN_STS, &status );
if ( (status & MII_GS_LINK) && /* We only support link info on Nat.Sem. PHY's */
(tlphy_id1 == NAT_SEM_ID1) &&
(tlphy_id2 == NAT_SEM_ID2) ) {
TLan_MiiReadReg( dev, phy, MII_AN_LPA, &partner );
TLan_MiiReadReg( dev, phy, TLAN_TLPHY_PAR, &tlphy_par );
printk( "TLAN: %s: Link active with ", dev->name );
if (!(tlphy_par & TLAN_PHY_AN_EN_STAT)) {
printk( "forced 10%sMbps %s-Duplex\n",
tlphy_par & TLAN_PHY_SPEED_100 ? "" : "0",
tlphy_par & TLAN_PHY_DUPLEX_FULL ? "Full" : "Half");
} else {
printk( "AutoNegotiation enabled, at 10%sMbps %s-Duplex\n",
tlphy_par & TLAN_PHY_SPEED_100 ? "" : "0",
tlphy_par & TLAN_PHY_DUPLEX_FULL ? "Full" : "Half");
printk("TLAN: Partner capability: ");
for (i = 5; i <= 10; i++)
if (partner & (1<<i))
printk("%s", media[i-5]);
printk("\n");
}
TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK );
#ifdef MONITOR
/* We have link beat..for now anyway */
priv->link = 1;
/*Enabling link beat monitoring */
TLan_SetTimer( dev, (10*HZ), TLAN_TIMER_LINK_BEAT );
#endif
} else if (status & MII_GS_LINK) {
printk( "TLAN: %s: Link active\n", dev->name );
TLan_DioWrite8( dev->base_addr, TLAN_LED_REG, TLAN_LED_LINK );
}
}
if ( priv->phyNum == 0 ) {
TLan_MiiReadReg( dev, phy, TLAN_TLPHY_CTL, &tlphy_ctl );
tlphy_ctl |= TLAN_TC_INTEN;
TLan_MiiWriteReg( dev, phy, TLAN_TLPHY_CTL, tlphy_ctl );
sio = TLan_DioRead8( dev->base_addr, TLAN_NET_SIO );
sio |= TLAN_NET_SIO_MINTEN;
TLan_DioWrite8( dev->base_addr, TLAN_NET_SIO, sio );
}
if ( status & MII_GS_LINK ) {
TLan_SetMac( dev, 0, dev->dev_addr );
priv->phyOnline = 1;
outb( ( TLAN_HC_INT_ON >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 );
if ( debug >= 1 && debug != TLAN_DEBUG_PROBE ) {
outb( ( TLAN_HC_REQ_INT >> 8 ), dev->base_addr + TLAN_HOST_CMD + 1 );
}
outl( virt_to_bus( priv->rxList ), dev->base_addr + TLAN_CH_PARM );
outl( TLAN_HC_GO | TLAN_HC_RT, dev->base_addr + TLAN_HOST_CMD );
} else {
printk( "TLAN: %s: Link inactive, will retry in 10 secs...\n", dev->name );
TLan_SetTimer( dev, (10*HZ), TLAN_TIMER_FINISH_RESET );
return;
}
} /* TLan_FinishReset */
/***************************************************************
* TLan_SetMac
*
* Returns:
* Nothing
* Parms:
* dev Pointer to device structure of adapter
* on which to change the AREG.
* areg The AREG to set the address in (0 - 3).
* mac A pointer to an array of chars. Each
* element stores one byte of the address.
* IE, it isn't in ascii.
*
* This function transfers a MAC address to one of the
* TLAN AREGs (address registers). The TLAN chip locks
* the register on writing to offset 0 and unlocks the
* register after writing to offset 5. If NULL is passed
* in mac, then the AREG is filled with 0's.
*
**************************************************************/
void TLan_SetMac( struct net_device *dev, int areg, char *mac )
{
int i;
areg *= 6;
if ( mac != NULL ) {
for ( i = 0; i < 6; i++ )
TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, mac[i] );
} else {
for ( i = 0; i < 6; i++ )
TLan_DioWrite8( dev->base_addr, TLAN_AREG_0 + areg + i, 0 );
}
} /* TLan_SetMac */
#endif