| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| // |
| // Author: wan@google.com (Zhanyong Wan) |
| |
| // Google Test - The Google C++ Testing Framework |
| // |
| // This file implements a universal value printer that can print a |
| // value of any type T: |
| // |
| // void ::testing::internal::UniversalPrinter<T>::Print(value, ostream_ptr); |
| // |
| // A user can teach this function how to print a class type T by |
| // defining either operator<<() or PrintTo() in the namespace that |
| // defines T. More specifically, the FIRST defined function in the |
| // following list will be used (assuming T is defined in namespace |
| // foo): |
| // |
| // 1. foo::PrintTo(const T&, ostream*) |
| // 2. operator<<(ostream&, const T&) defined in either foo or the |
| // global namespace. |
| // |
| // If none of the above is defined, it will print the debug string of |
| // the value if it is a protocol buffer, or print the raw bytes in the |
| // value otherwise. |
| // |
| // To aid debugging: when T is a reference type, the address of the |
| // value is also printed; when T is a (const) char pointer, both the |
| // pointer value and the NUL-terminated string it points to are |
| // printed. |
| // |
| // We also provide some convenient wrappers: |
| // |
| // // Prints a value to a string. For a (const or not) char |
| // // pointer, the NUL-terminated string (but not the pointer) is |
| // // printed. |
| // std::string ::testing::PrintToString(const T& value); |
| // |
| // // Prints a value tersely: for a reference type, the referenced |
| // // value (but not the address) is printed; for a (const or not) char |
| // // pointer, the NUL-terminated string (but not the pointer) is |
| // // printed. |
| // void ::testing::internal::UniversalTersePrint(const T& value, ostream*); |
| // |
| // // Prints value using the type inferred by the compiler. The difference |
| // // from UniversalTersePrint() is that this function prints both the |
| // // pointer and the NUL-terminated string for a (const or not) char pointer. |
| // void ::testing::internal::UniversalPrint(const T& value, ostream*); |
| // |
| // // Prints the fields of a tuple tersely to a string vector, one |
| // // element for each field. Tuple support must be enabled in |
| // // gtest-port.h. |
| // std::vector<string> UniversalTersePrintTupleFieldsToStrings( |
| // const Tuple& value); |
| // |
| // Known limitation: |
| // |
| // The print primitives print the elements of an STL-style container |
| // using the compiler-inferred type of *iter where iter is a |
| // const_iterator of the container. When const_iterator is an input |
| // iterator but not a forward iterator, this inferred type may not |
| // match value_type, and the print output may be incorrect. In |
| // practice, this is rarely a problem as for most containers |
| // const_iterator is a forward iterator. We'll fix this if there's an |
| // actual need for it. Note that this fix cannot rely on value_type |
| // being defined as many user-defined container types don't have |
| // value_type. |
| |
| #ifndef GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
| #define GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |
| |
| #include <ostream> // NOLINT |
| #include <sstream> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| #include "gtest/internal/gtest-port.h" |
| #include "gtest/internal/gtest-internal.h" |
| |
| namespace testing { |
| |
| // Definitions in the 'internal' and 'internal2' name spaces are |
| // subject to change without notice. DO NOT USE THEM IN USER CODE! |
| namespace internal2 { |
| |
| // Prints the given number of bytes in the given object to the given |
| // ostream. |
| GTEST_API_ void PrintBytesInObjectTo(const unsigned char* obj_bytes, |
| size_t count, |
| ::std::ostream* os); |
| |
| // For selecting which printer to use when a given type has neither << |
| // nor PrintTo(). |
| enum TypeKind { |
| kProtobuf, // a protobuf type |
| kConvertibleToInteger, // a type implicitly convertible to BiggestInt |
| // (e.g. a named or unnamed enum type) |
| kOtherType // anything else |
| }; |
| |
| // TypeWithoutFormatter<T, kTypeKind>::PrintValue(value, os) is called |
| // by the universal printer to print a value of type T when neither |
| // operator<< nor PrintTo() is defined for T, where kTypeKind is the |
| // "kind" of T as defined by enum TypeKind. |
| template <typename T, TypeKind kTypeKind> |
| class TypeWithoutFormatter { |
| public: |
| // This default version is called when kTypeKind is kOtherType. |
| static void PrintValue(const T& value, ::std::ostream* os) { |
| PrintBytesInObjectTo(reinterpret_cast<const unsigned char*>(&value), |
| sizeof(value), os); |
| } |
| }; |
| |
| // We print a protobuf using its ShortDebugString() when the string |
| // doesn't exceed this many characters; otherwise we print it using |
| // DebugString() for better readability. |
| const size_t kProtobufOneLinerMaxLength = 50; |
| |
| template <typename T> |
| class TypeWithoutFormatter<T, kProtobuf> { |
| public: |
| static void PrintValue(const T& value, ::std::ostream* os) { |
| const ::testing::internal::string short_str = value.ShortDebugString(); |
| const ::testing::internal::string pretty_str = |
| short_str.length() <= kProtobufOneLinerMaxLength ? |
| short_str : ("\n" + value.DebugString()); |
| *os << ("<" + pretty_str + ">"); |
| } |
| }; |
| |
| template <typename T> |
| class TypeWithoutFormatter<T, kConvertibleToInteger> { |
| public: |
| // Since T has no << operator or PrintTo() but can be implicitly |
| // converted to BiggestInt, we print it as a BiggestInt. |
| // |
| // Most likely T is an enum type (either named or unnamed), in which |
| // case printing it as an integer is the desired behavior. In case |
| // T is not an enum, printing it as an integer is the best we can do |
| // given that it has no user-defined printer. |
| static void PrintValue(const T& value, ::std::ostream* os) { |
| const internal::BiggestInt kBigInt = value; |
| *os << kBigInt; |
| } |
| }; |
| |
| // Prints the given value to the given ostream. If the value is a |
| // protocol message, its debug string is printed; if it's an enum or |
| // of a type implicitly convertible to BiggestInt, it's printed as an |
| // integer; otherwise the bytes in the value are printed. This is |
| // what UniversalPrinter<T>::Print() does when it knows nothing about |
| // type T and T has neither << operator nor PrintTo(). |
| // |
| // A user can override this behavior for a class type Foo by defining |
| // a << operator in the namespace where Foo is defined. |
| // |
| // We put this operator in namespace 'internal2' instead of 'internal' |
| // to simplify the implementation, as much code in 'internal' needs to |
| // use << in STL, which would conflict with our own << were it defined |
| // in 'internal'. |
| // |
| // Note that this operator<< takes a generic std::basic_ostream<Char, |
| // CharTraits> type instead of the more restricted std::ostream. If |
| // we define it to take an std::ostream instead, we'll get an |
| // "ambiguous overloads" compiler error when trying to print a type |
| // Foo that supports streaming to std::basic_ostream<Char, |
| // CharTraits>, as the compiler cannot tell whether |
| // operator<<(std::ostream&, const T&) or |
| // operator<<(std::basic_stream<Char, CharTraits>, const Foo&) is more |
| // specific. |
| template <typename Char, typename CharTraits, typename T> |
| ::std::basic_ostream<Char, CharTraits>& operator<<( |
| ::std::basic_ostream<Char, CharTraits>& os, const T& x) { |
| TypeWithoutFormatter<T, |
| (internal::IsAProtocolMessage<T>::value ? kProtobuf : |
| internal::ImplicitlyConvertible<const T&, internal::BiggestInt>::value ? |
| kConvertibleToInteger : kOtherType)>::PrintValue(x, &os); |
| return os; |
| } |
| |
| } // namespace internal2 |
| } // namespace testing |
| |
| // This namespace MUST NOT BE NESTED IN ::testing, or the name look-up |
| // magic needed for implementing UniversalPrinter won't work. |
| namespace testing_internal { |
| |
| // Used to print a value that is not an STL-style container when the |
| // user doesn't define PrintTo() for it. |
| template <typename T> |
| void DefaultPrintNonContainerTo(const T& value, ::std::ostream* os) { |
| // With the following statement, during unqualified name lookup, |
| // testing::internal2::operator<< appears as if it was declared in |
| // the nearest enclosing namespace that contains both |
| // ::testing_internal and ::testing::internal2, i.e. the global |
| // namespace. For more details, refer to the C++ Standard section |
| // 7.3.4-1 [namespace.udir]. This allows us to fall back onto |
| // testing::internal2::operator<< in case T doesn't come with a << |
| // operator. |
| // |
| // We cannot write 'using ::testing::internal2::operator<<;', which |
| // gcc 3.3 fails to compile due to a compiler bug. |
| using namespace ::testing::internal2; // NOLINT |
| |
| // Assuming T is defined in namespace foo, in the next statement, |
| // the compiler will consider all of: |
| // |
| // 1. foo::operator<< (thanks to Koenig look-up), |
| // 2. ::operator<< (as the current namespace is enclosed in ::), |
| // 3. testing::internal2::operator<< (thanks to the using statement above). |
| // |
| // The operator<< whose type matches T best will be picked. |
| // |
| // We deliberately allow #2 to be a candidate, as sometimes it's |
| // impossible to define #1 (e.g. when foo is ::std, defining |
| // anything in it is undefined behavior unless you are a compiler |
| // vendor.). |
| *os << value; |
| } |
| |
| } // namespace testing_internal |
| |
| namespace testing { |
| namespace internal { |
| |
| // UniversalPrinter<T>::Print(value, ostream_ptr) prints the given |
| // value to the given ostream. The caller must ensure that |
| // 'ostream_ptr' is not NULL, or the behavior is undefined. |
| // |
| // We define UniversalPrinter as a class template (as opposed to a |
| // function template), as we need to partially specialize it for |
| // reference types, which cannot be done with function templates. |
| template <typename T> |
| class UniversalPrinter; |
| |
| template <typename T> |
| void UniversalPrint(const T& value, ::std::ostream* os); |
| |
| // Used to print an STL-style container when the user doesn't define |
| // a PrintTo() for it. |
| template <typename C> |
| void DefaultPrintTo(IsContainer /* dummy */, |
| false_type /* is not a pointer */, |
| const C& container, ::std::ostream* os) { |
| const size_t kMaxCount = 32; // The maximum number of elements to print. |
| *os << '{'; |
| size_t count = 0; |
| for (typename C::const_iterator it = container.begin(); |
| it != container.end(); ++it, ++count) { |
| if (count > 0) { |
| *os << ','; |
| if (count == kMaxCount) { // Enough has been printed. |
| *os << " ..."; |
| break; |
| } |
| } |
| *os << ' '; |
| // We cannot call PrintTo(*it, os) here as PrintTo() doesn't |
| // handle *it being a native array. |
| internal::UniversalPrint(*it, os); |
| } |
| |
| if (count > 0) { |
| *os << ' '; |
| } |
| *os << '}'; |
| } |
| |
| // Used to print a pointer that is neither a char pointer nor a member |
| // pointer, when the user doesn't define PrintTo() for it. (A member |
| // variable pointer or member function pointer doesn't really point to |
| // a location in the address space. Their representation is |
| // implementation-defined. Therefore they will be printed as raw |
| // bytes.) |
| template <typename T> |
| void DefaultPrintTo(IsNotContainer /* dummy */, |
| true_type /* is a pointer */, |
| T* p, ::std::ostream* os) { |
| if (p == NULL) { |
| *os << "NULL"; |
| } else { |
| // C++ doesn't allow casting from a function pointer to any object |
| // pointer. |
| // |
| // IsTrue() silences warnings: "Condition is always true", |
| // "unreachable code". |
| if (IsTrue(ImplicitlyConvertible<T*, const void*>::value)) { |
| // T is not a function type. We just call << to print p, |
| // relying on ADL to pick up user-defined << for their pointer |
| // types, if any. |
| *os << p; |
| } else { |
| // T is a function type, so '*os << p' doesn't do what we want |
| // (it just prints p as bool). We want to print p as a const |
| // void*. However, we cannot cast it to const void* directly, |
| // even using reinterpret_cast, as earlier versions of gcc |
| // (e.g. 3.4.5) cannot compile the cast when p is a function |
| // pointer. Casting to UInt64 first solves the problem. |
| *os << reinterpret_cast<const void*>( |
| reinterpret_cast<internal::UInt64>(p)); |
| } |
| } |
| } |
| |
| // Used to print a non-container, non-pointer value when the user |
| // doesn't define PrintTo() for it. |
| template <typename T> |
| void DefaultPrintTo(IsNotContainer /* dummy */, |
| false_type /* is not a pointer */, |
| const T& value, ::std::ostream* os) { |
| ::testing_internal::DefaultPrintNonContainerTo(value, os); |
| } |
| |
| // Prints the given value using the << operator if it has one; |
| // otherwise prints the bytes in it. This is what |
| // UniversalPrinter<T>::Print() does when PrintTo() is not specialized |
| // or overloaded for type T. |
| // |
| // A user can override this behavior for a class type Foo by defining |
| // an overload of PrintTo() in the namespace where Foo is defined. We |
| // give the user this option as sometimes defining a << operator for |
| // Foo is not desirable (e.g. the coding style may prevent doing it, |
| // or there is already a << operator but it doesn't do what the user |
| // wants). |
| template <typename T> |
| void PrintTo(const T& value, ::std::ostream* os) { |
| // DefaultPrintTo() is overloaded. The type of its first two |
| // arguments determine which version will be picked. If T is an |
| // STL-style container, the version for container will be called; if |
| // T is a pointer, the pointer version will be called; otherwise the |
| // generic version will be called. |
| // |
| // Note that we check for container types here, prior to we check |
| // for protocol message types in our operator<<. The rationale is: |
| // |
| // For protocol messages, we want to give people a chance to |
| // override Google Mock's format by defining a PrintTo() or |
| // operator<<. For STL containers, other formats can be |
| // incompatible with Google Mock's format for the container |
| // elements; therefore we check for container types here to ensure |
| // that our format is used. |
| // |
| // The second argument of DefaultPrintTo() is needed to bypass a bug |
| // in Symbian's C++ compiler that prevents it from picking the right |
| // overload between: |
| // |
| // PrintTo(const T& x, ...); |
| // PrintTo(T* x, ...); |
| DefaultPrintTo(IsContainerTest<T>(0), is_pointer<T>(), value, os); |
| } |
| |
| // The following list of PrintTo() overloads tells |
| // UniversalPrinter<T>::Print() how to print standard types (built-in |
| // types, strings, plain arrays, and pointers). |
| |
| // Overloads for various char types. |
| GTEST_API_ void PrintTo(unsigned char c, ::std::ostream* os); |
| GTEST_API_ void PrintTo(signed char c, ::std::ostream* os); |
| inline void PrintTo(char c, ::std::ostream* os) { |
| // When printing a plain char, we always treat it as unsigned. This |
| // way, the output won't be affected by whether the compiler thinks |
| // char is signed or not. |
| PrintTo(static_cast<unsigned char>(c), os); |
| } |
| |
| // Overloads for other simple built-in types. |
| inline void PrintTo(bool x, ::std::ostream* os) { |
| *os << (x ? "true" : "false"); |
| } |
| |
| // Overload for wchar_t type. |
| // Prints a wchar_t as a symbol if it is printable or as its internal |
| // code otherwise and also as its decimal code (except for L'\0'). |
| // The L'\0' char is printed as "L'\\0'". The decimal code is printed |
| // as signed integer when wchar_t is implemented by the compiler |
| // as a signed type and is printed as an unsigned integer when wchar_t |
| // is implemented as an unsigned type. |
| GTEST_API_ void PrintTo(wchar_t wc, ::std::ostream* os); |
| |
| // Overloads for C strings. |
| GTEST_API_ void PrintTo(const char* s, ::std::ostream* os); |
| inline void PrintTo(char* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const char*>(s), os); |
| } |
| |
| // signed/unsigned char is often used for representing binary data, so |
| // we print pointers to it as void* to be safe. |
| inline void PrintTo(const signed char* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const void*>(s), os); |
| } |
| inline void PrintTo(signed char* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const void*>(s), os); |
| } |
| inline void PrintTo(const unsigned char* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const void*>(s), os); |
| } |
| inline void PrintTo(unsigned char* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const void*>(s), os); |
| } |
| |
| // MSVC can be configured to define wchar_t as a typedef of unsigned |
| // short. It defines _NATIVE_WCHAR_T_DEFINED when wchar_t is a native |
| // type. When wchar_t is a typedef, defining an overload for const |
| // wchar_t* would cause unsigned short* be printed as a wide string, |
| // possibly causing invalid memory accesses. |
| #if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED) |
| // Overloads for wide C strings |
| GTEST_API_ void PrintTo(const wchar_t* s, ::std::ostream* os); |
| inline void PrintTo(wchar_t* s, ::std::ostream* os) { |
| PrintTo(ImplicitCast_<const wchar_t*>(s), os); |
| } |
| #endif |
| |
| // Overload for C arrays. Multi-dimensional arrays are printed |
| // properly. |
| |
| // Prints the given number of elements in an array, without printing |
| // the curly braces. |
| template <typename T> |
| void PrintRawArrayTo(const T a[], size_t count, ::std::ostream* os) { |
| UniversalPrint(a[0], os); |
| for (size_t i = 1; i != count; i++) { |
| *os << ", "; |
| UniversalPrint(a[i], os); |
| } |
| } |
| |
| // Overloads for ::string and ::std::string. |
| #if GTEST_HAS_GLOBAL_STRING |
| GTEST_API_ void PrintStringTo(const ::string&s, ::std::ostream* os); |
| inline void PrintTo(const ::string& s, ::std::ostream* os) { |
| PrintStringTo(s, os); |
| } |
| #endif // GTEST_HAS_GLOBAL_STRING |
| |
| GTEST_API_ void PrintStringTo(const ::std::string&s, ::std::ostream* os); |
| inline void PrintTo(const ::std::string& s, ::std::ostream* os) { |
| PrintStringTo(s, os); |
| } |
| |
| // Overloads for ::wstring and ::std::wstring. |
| #if GTEST_HAS_GLOBAL_WSTRING |
| GTEST_API_ void PrintWideStringTo(const ::wstring&s, ::std::ostream* os); |
| inline void PrintTo(const ::wstring& s, ::std::ostream* os) { |
| PrintWideStringTo(s, os); |
| } |
| #endif // GTEST_HAS_GLOBAL_WSTRING |
| |
| #if GTEST_HAS_STD_WSTRING |
| GTEST_API_ void PrintWideStringTo(const ::std::wstring&s, ::std::ostream* os); |
| inline void PrintTo(const ::std::wstring& s, ::std::ostream* os) { |
| PrintWideStringTo(s, os); |
| } |
| #endif // GTEST_HAS_STD_WSTRING |
| |
| #if GTEST_HAS_TR1_TUPLE |
| // Overload for ::std::tr1::tuple. Needed for printing function arguments, |
| // which are packed as tuples. |
| |
| // Helper function for printing a tuple. T must be instantiated with |
| // a tuple type. |
| template <typename T> |
| void PrintTupleTo(const T& t, ::std::ostream* os); |
| |
| // Overloaded PrintTo() for tuples of various arities. We support |
| // tuples of up-to 10 fields. The following implementation works |
| // regardless of whether tr1::tuple is implemented using the |
| // non-standard variadic template feature or not. |
| |
| inline void PrintTo(const ::std::tr1::tuple<>& t, ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1> |
| void PrintTo(const ::std::tr1::tuple<T1>& t, ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2> |
| void PrintTo(const ::std::tr1::tuple<T1, T2>& t, ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3>& t, ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4>& t, ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9> |
| void PrintTo(const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| |
| template <typename T1, typename T2, typename T3, typename T4, typename T5, |
| typename T6, typename T7, typename T8, typename T9, typename T10> |
| void PrintTo( |
| const ::std::tr1::tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>& t, |
| ::std::ostream* os) { |
| PrintTupleTo(t, os); |
| } |
| #endif // GTEST_HAS_TR1_TUPLE |
| |
| // Overload for std::pair. |
| template <typename T1, typename T2> |
| void PrintTo(const ::std::pair<T1, T2>& value, ::std::ostream* os) { |
| *os << '('; |
| // We cannot use UniversalPrint(value.first, os) here, as T1 may be |
| // a reference type. The same for printing value.second. |
| UniversalPrinter<T1>::Print(value.first, os); |
| *os << ", "; |
| UniversalPrinter<T2>::Print(value.second, os); |
| *os << ')'; |
| } |
| |
| // Implements printing a non-reference type T by letting the compiler |
| // pick the right overload of PrintTo() for T. |
| template <typename T> |
| class UniversalPrinter { |
| public: |
| // MSVC warns about adding const to a function type, so we want to |
| // disable the warning. |
| #ifdef _MSC_VER |
| # pragma warning(push) // Saves the current warning state. |
| # pragma warning(disable:4180) // Temporarily disables warning 4180. |
| #endif // _MSC_VER |
| |
| // Note: we deliberately don't call this PrintTo(), as that name |
| // conflicts with ::testing::internal::PrintTo in the body of the |
| // function. |
| static void Print(const T& value, ::std::ostream* os) { |
| // By default, ::testing::internal::PrintTo() is used for printing |
| // the value. |
| // |
| // Thanks to Koenig look-up, if T is a class and has its own |
| // PrintTo() function defined in its namespace, that function will |
| // be visible here. Since it is more specific than the generic ones |
| // in ::testing::internal, it will be picked by the compiler in the |
| // following statement - exactly what we want. |
| PrintTo(value, os); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) // Restores the warning state. |
| #endif // _MSC_VER |
| }; |
| |
| // UniversalPrintArray(begin, len, os) prints an array of 'len' |
| // elements, starting at address 'begin'. |
| template <typename T> |
| void UniversalPrintArray(const T* begin, size_t len, ::std::ostream* os) { |
| if (len == 0) { |
| *os << "{}"; |
| } else { |
| *os << "{ "; |
| const size_t kThreshold = 18; |
| const size_t kChunkSize = 8; |
| // If the array has more than kThreshold elements, we'll have to |
| // omit some details by printing only the first and the last |
| // kChunkSize elements. |
| // TODO(wan@google.com): let the user control the threshold using a flag. |
| if (len <= kThreshold) { |
| PrintRawArrayTo(begin, len, os); |
| } else { |
| PrintRawArrayTo(begin, kChunkSize, os); |
| *os << ", ..., "; |
| PrintRawArrayTo(begin + len - kChunkSize, kChunkSize, os); |
| } |
| *os << " }"; |
| } |
| } |
| // This overload prints a (const) char array compactly. |
| GTEST_API_ void UniversalPrintArray(const char* begin, |
| size_t len, |
| ::std::ostream* os); |
| |
| // Implements printing an array type T[N]. |
| template <typename T, size_t N> |
| class UniversalPrinter<T[N]> { |
| public: |
| // Prints the given array, omitting some elements when there are too |
| // many. |
| static void Print(const T (&a)[N], ::std::ostream* os) { |
| UniversalPrintArray(a, N, os); |
| } |
| }; |
| |
| // Implements printing a reference type T&. |
| template <typename T> |
| class UniversalPrinter<T&> { |
| public: |
| // MSVC warns about adding const to a function type, so we want to |
| // disable the warning. |
| #ifdef _MSC_VER |
| # pragma warning(push) // Saves the current warning state. |
| # pragma warning(disable:4180) // Temporarily disables warning 4180. |
| #endif // _MSC_VER |
| |
| static void Print(const T& value, ::std::ostream* os) { |
| // Prints the address of the value. We use reinterpret_cast here |
| // as static_cast doesn't compile when T is a function type. |
| *os << "@" << reinterpret_cast<const void*>(&value) << " "; |
| |
| // Then prints the value itself. |
| UniversalPrint(value, os); |
| } |
| |
| #ifdef _MSC_VER |
| # pragma warning(pop) // Restores the warning state. |
| #endif // _MSC_VER |
| }; |
| |
| // Prints a value tersely: for a reference type, the referenced value |
| // (but not the address) is printed; for a (const) char pointer, the |
| // NUL-terminated string (but not the pointer) is printed. |
| template <typename T> |
| void UniversalTersePrint(const T& value, ::std::ostream* os) { |
| UniversalPrint(value, os); |
| } |
| inline void UniversalTersePrint(const char* str, ::std::ostream* os) { |
| if (str == NULL) { |
| *os << "NULL"; |
| } else { |
| UniversalPrint(string(str), os); |
| } |
| } |
| inline void UniversalTersePrint(char* str, ::std::ostream* os) { |
| UniversalTersePrint(static_cast<const char*>(str), os); |
| } |
| |
| // Prints a value using the type inferred by the compiler. The |
| // difference between this and UniversalTersePrint() is that for a |
| // (const) char pointer, this prints both the pointer and the |
| // NUL-terminated string. |
| template <typename T> |
| void UniversalPrint(const T& value, ::std::ostream* os) { |
| UniversalPrinter<T>::Print(value, os); |
| } |
| |
| #if GTEST_HAS_TR1_TUPLE |
| typedef ::std::vector<string> Strings; |
| |
| // This helper template allows PrintTo() for tuples and |
| // UniversalTersePrintTupleFieldsToStrings() to be defined by |
| // induction on the number of tuple fields. The idea is that |
| // TuplePrefixPrinter<N>::PrintPrefixTo(t, os) prints the first N |
| // fields in tuple t, and can be defined in terms of |
| // TuplePrefixPrinter<N - 1>. |
| |
| // The inductive case. |
| template <size_t N> |
| struct TuplePrefixPrinter { |
| // Prints the first N fields of a tuple. |
| template <typename Tuple> |
| static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
| TuplePrefixPrinter<N - 1>::PrintPrefixTo(t, os); |
| *os << ", "; |
| UniversalPrinter<typename ::std::tr1::tuple_element<N - 1, Tuple>::type> |
| ::Print(::std::tr1::get<N - 1>(t), os); |
| } |
| |
| // Tersely prints the first N fields of a tuple to a string vector, |
| // one element for each field. |
| template <typename Tuple> |
| static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
| TuplePrefixPrinter<N - 1>::TersePrintPrefixToStrings(t, strings); |
| ::std::stringstream ss; |
| UniversalTersePrint(::std::tr1::get<N - 1>(t), &ss); |
| strings->push_back(ss.str()); |
| } |
| }; |
| |
| // Base cases. |
| template <> |
| struct TuplePrefixPrinter<0> { |
| template <typename Tuple> |
| static void PrintPrefixTo(const Tuple&, ::std::ostream*) {} |
| |
| template <typename Tuple> |
| static void TersePrintPrefixToStrings(const Tuple&, Strings*) {} |
| }; |
| // We have to specialize the entire TuplePrefixPrinter<> class |
| // template here, even though the definition of |
| // TersePrintPrefixToStrings() is the same as the generic version, as |
| // Embarcadero (formerly CodeGear, formerly Borland) C++ doesn't |
| // support specializing a method template of a class template. |
| template <> |
| struct TuplePrefixPrinter<1> { |
| template <typename Tuple> |
| static void PrintPrefixTo(const Tuple& t, ::std::ostream* os) { |
| UniversalPrinter<typename ::std::tr1::tuple_element<0, Tuple>::type>:: |
| Print(::std::tr1::get<0>(t), os); |
| } |
| |
| template <typename Tuple> |
| static void TersePrintPrefixToStrings(const Tuple& t, Strings* strings) { |
| ::std::stringstream ss; |
| UniversalTersePrint(::std::tr1::get<0>(t), &ss); |
| strings->push_back(ss.str()); |
| } |
| }; |
| |
| // Helper function for printing a tuple. T must be instantiated with |
| // a tuple type. |
| template <typename T> |
| void PrintTupleTo(const T& t, ::std::ostream* os) { |
| *os << "("; |
| TuplePrefixPrinter< ::std::tr1::tuple_size<T>::value>:: |
| PrintPrefixTo(t, os); |
| *os << ")"; |
| } |
| |
| // Prints the fields of a tuple tersely to a string vector, one |
| // element for each field. See the comment before |
| // UniversalTersePrint() for how we define "tersely". |
| template <typename Tuple> |
| Strings UniversalTersePrintTupleFieldsToStrings(const Tuple& value) { |
| Strings result; |
| TuplePrefixPrinter< ::std::tr1::tuple_size<Tuple>::value>:: |
| TersePrintPrefixToStrings(value, &result); |
| return result; |
| } |
| #endif // GTEST_HAS_TR1_TUPLE |
| |
| } // namespace internal |
| |
| template <typename T> |
| ::std::string PrintToString(const T& value) { |
| ::std::stringstream ss; |
| internal::UniversalTersePrint(value, &ss); |
| return ss.str(); |
| } |
| |
| } // namespace testing |
| |
| #endif // GTEST_INCLUDE_GTEST_GTEST_PRINTERS_H_ |