| |
| /* Author : Stephen Smalley, <sds@epoch.ncsc.mil> */ |
| |
| /* |
| * Updated: Yuichi Nakamura <ynakam@hitachisoft.jp> |
| * Tuned number of hash slots for avtab to reduce memory usage |
| */ |
| |
| /* Updated: Frank Mayer <mayerf@tresys.com> |
| * and Karl MacMillan <kmacmillan@mentalrootkit.com> |
| * |
| * Added conditional policy language extensions |
| * |
| * Updated: Red Hat, Inc. James Morris <jmorris@redhat.com> |
| * |
| * Code cleanup |
| * |
| * Updated: Karl MacMillan <kmacmillan@mentalrootkit.com> |
| * |
| * Copyright (C) 2003 Tresys Technology, LLC |
| * Copyright (C) 2003,2007 Red Hat, Inc. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| */ |
| |
| /* FLASK */ |
| |
| /* |
| * Implementation of the access vector table type. |
| */ |
| |
| #include <stdlib.h> |
| #include <sepol/policydb/avtab.h> |
| #include <sepol/policydb/policydb.h> |
| #include <sepol/errcodes.h> |
| |
| #include "debug.h" |
| #include "private.h" |
| |
| static inline int avtab_hash(struct avtab_key *keyp, uint16_t mask) |
| { |
| return ((keyp->target_class + (keyp->target_type << 2) + |
| (keyp->source_type << 9)) & mask); |
| } |
| |
| static avtab_ptr_t |
| avtab_insert_node(avtab_t * h, int hvalue, avtab_ptr_t prev, avtab_key_t * key, |
| avtab_datum_t * datum) |
| { |
| avtab_ptr_t newnode; |
| newnode = (avtab_ptr_t) malloc(sizeof(struct avtab_node)); |
| if (newnode == NULL) |
| return NULL; |
| memset(newnode, 0, sizeof(struct avtab_node)); |
| newnode->key = *key; |
| newnode->datum = *datum; |
| if (prev) { |
| newnode->next = prev->next; |
| prev->next = newnode; |
| } else { |
| newnode->next = h->htable[hvalue]; |
| h->htable[hvalue] = newnode; |
| } |
| |
| h->nel++; |
| return newnode; |
| } |
| |
| int avtab_insert(avtab_t * h, avtab_key_t * key, avtab_datum_t * datum) |
| { |
| int hvalue; |
| avtab_ptr_t prev, cur, newnode; |
| uint16_t specified = |
| key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); |
| |
| if (!h || !h->htable) |
| return SEPOL_ENOMEM; |
| |
| hvalue = avtab_hash(key, h->mask); |
| for (prev = NULL, cur = h->htable[hvalue]; |
| cur; prev = cur, cur = cur->next) { |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class == cur->key.target_class && |
| (specified & cur->key.specified)) |
| return SEPOL_EEXIST; |
| if (key->source_type < cur->key.source_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type < cur->key.target_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class < cur->key.target_class) |
| break; |
| } |
| |
| newnode = avtab_insert_node(h, hvalue, prev, key, datum); |
| if (!newnode) |
| return SEPOL_ENOMEM; |
| |
| return 0; |
| } |
| |
| /* Unlike avtab_insert(), this function allow multiple insertions of the same |
| * key/specified mask into the table, as needed by the conditional avtab. |
| * It also returns a pointer to the node inserted. |
| */ |
| avtab_ptr_t |
| avtab_insert_nonunique(avtab_t * h, avtab_key_t * key, avtab_datum_t * datum) |
| { |
| int hvalue; |
| avtab_ptr_t prev, cur, newnode; |
| uint16_t specified = |
| key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); |
| |
| if (!h || !h->htable) |
| return NULL; |
| hvalue = avtab_hash(key, h->mask); |
| for (prev = NULL, cur = h->htable[hvalue]; |
| cur; prev = cur, cur = cur->next) { |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class == cur->key.target_class && |
| (specified & cur->key.specified)) |
| break; |
| if (key->source_type < cur->key.source_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type < cur->key.target_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class < cur->key.target_class) |
| break; |
| } |
| newnode = avtab_insert_node(h, hvalue, prev, key, datum); |
| |
| return newnode; |
| } |
| |
| avtab_datum_t *avtab_search(avtab_t * h, avtab_key_t * key) |
| { |
| int hvalue; |
| avtab_ptr_t cur; |
| uint16_t specified = |
| key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); |
| |
| if (!h || !h->htable) |
| return NULL; |
| |
| hvalue = avtab_hash(key, h->mask); |
| for (cur = h->htable[hvalue]; cur; cur = cur->next) { |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class == cur->key.target_class && |
| (specified & cur->key.specified)) |
| return &cur->datum; |
| |
| if (key->source_type < cur->key.source_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type < cur->key.target_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class < cur->key.target_class) |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| /* This search function returns a node pointer, and can be used in |
| * conjunction with avtab_search_next_node() |
| */ |
| avtab_ptr_t avtab_search_node(avtab_t * h, avtab_key_t * key) |
| { |
| int hvalue; |
| avtab_ptr_t cur; |
| uint16_t specified = |
| key->specified & ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); |
| |
| if (!h || !h->htable) |
| return NULL; |
| |
| hvalue = avtab_hash(key, h->mask); |
| for (cur = h->htable[hvalue]; cur; cur = cur->next) { |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class == cur->key.target_class && |
| (specified & cur->key.specified)) |
| return cur; |
| |
| if (key->source_type < cur->key.source_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type < cur->key.target_type) |
| break; |
| if (key->source_type == cur->key.source_type && |
| key->target_type == cur->key.target_type && |
| key->target_class < cur->key.target_class) |
| break; |
| } |
| return NULL; |
| } |
| |
| avtab_ptr_t avtab_search_node_next(avtab_ptr_t node, int specified) |
| { |
| avtab_ptr_t cur; |
| |
| if (!node) |
| return NULL; |
| |
| specified &= ~(AVTAB_ENABLED | AVTAB_ENABLED_OLD); |
| for (cur = node->next; cur; cur = cur->next) { |
| if (node->key.source_type == cur->key.source_type && |
| node->key.target_type == cur->key.target_type && |
| node->key.target_class == cur->key.target_class && |
| (specified & cur->key.specified)) |
| return cur; |
| |
| if (node->key.source_type < cur->key.source_type) |
| break; |
| if (node->key.source_type == cur->key.source_type && |
| node->key.target_type < cur->key.target_type) |
| break; |
| if (node->key.source_type == cur->key.source_type && |
| node->key.target_type == cur->key.target_type && |
| node->key.target_class < cur->key.target_class) |
| break; |
| } |
| return NULL; |
| } |
| |
| void avtab_destroy(avtab_t * h) |
| { |
| unsigned int i; |
| avtab_ptr_t cur, temp; |
| |
| if (!h || !h->htable) |
| return; |
| |
| for (i = 0; i < h->nslot; i++) { |
| cur = h->htable[i]; |
| while (cur != NULL) { |
| temp = cur; |
| cur = cur->next; |
| free(temp); |
| } |
| h->htable[i] = NULL; |
| } |
| free(h->htable); |
| h->htable = NULL; |
| h->nslot = 0; |
| h->mask = 0; |
| } |
| |
| int avtab_map(avtab_t * h, |
| int (*apply) (avtab_key_t * k, |
| avtab_datum_t * d, void *args), void *args) |
| { |
| unsigned int i; |
| int ret; |
| avtab_ptr_t cur; |
| |
| if (!h) |
| return 0; |
| |
| for (i = 0; i < h->nslot; i++) { |
| cur = h->htable[i]; |
| while (cur != NULL) { |
| ret = apply(&cur->key, &cur->datum, args); |
| if (ret) |
| return ret; |
| cur = cur->next; |
| } |
| } |
| return 0; |
| } |
| |
| int avtab_init(avtab_t * h) |
| { |
| h->htable = NULL; |
| h->nel = 0; |
| return 0; |
| } |
| |
| int avtab_alloc(avtab_t *h, uint32_t nrules) |
| { |
| uint16_t mask = 0; |
| uint32_t shift = 0; |
| uint32_t work = nrules; |
| uint32_t nslot = 0; |
| |
| if (nrules == 0) |
| goto out; |
| |
| while (work) { |
| work = work >> 1; |
| shift++; |
| } |
| if (shift > 2) |
| shift = shift - 2; |
| nslot = 1 << shift; |
| if (nslot > MAX_AVTAB_SIZE) |
| nslot = MAX_AVTAB_SIZE; |
| mask = nslot - 1; |
| |
| h->htable = calloc(nslot, sizeof(avtab_ptr_t)); |
| if (!h->htable) |
| return -1; |
| out: |
| h->nel = 0; |
| h->nslot = nslot; |
| h->mask = mask; |
| return 0; |
| } |
| |
| void avtab_hash_eval(avtab_t * h, char *tag) |
| { |
| unsigned int i, chain_len, slots_used, max_chain_len; |
| avtab_ptr_t cur; |
| |
| slots_used = 0; |
| max_chain_len = 0; |
| for (i = 0; i < h->nslot; i++) { |
| cur = h->htable[i]; |
| if (cur) { |
| slots_used++; |
| chain_len = 0; |
| while (cur) { |
| chain_len++; |
| cur = cur->next; |
| } |
| |
| if (chain_len > max_chain_len) |
| max_chain_len = chain_len; |
| } |
| } |
| |
| printf |
| ("%s: %d entries and %d/%d buckets used, longest chain length %d\n", |
| tag, h->nel, slots_used, h->nslot, max_chain_len); |
| } |
| |
| /* Ordering of datums in the original avtab format in the policy file. */ |
| static uint16_t spec_order[] = { |
| AVTAB_ALLOWED, |
| AVTAB_AUDITDENY, |
| AVTAB_AUDITALLOW, |
| AVTAB_TRANSITION, |
| AVTAB_CHANGE, |
| AVTAB_MEMBER |
| }; |
| |
| int avtab_read_item(struct policy_file *fp, uint32_t vers, avtab_t * a, |
| int (*insertf) (avtab_t * a, avtab_key_t * k, |
| avtab_datum_t * d, void *p), void *p) |
| { |
| uint16_t buf16[4], enabled; |
| uint32_t buf32[7], items, items2, val; |
| avtab_key_t key; |
| avtab_datum_t datum; |
| unsigned set; |
| unsigned int i; |
| int rc; |
| |
| memset(&key, 0, sizeof(avtab_key_t)); |
| memset(&datum, 0, sizeof(avtab_datum_t)); |
| |
| if (vers < POLICYDB_VERSION_AVTAB) { |
| rc = next_entry(buf32, fp, sizeof(uint32_t)); |
| if (rc < 0) { |
| ERR(fp->handle, "truncated entry"); |
| return -1; |
| } |
| items2 = le32_to_cpu(buf32[0]); |
| |
| if (items2 < 5 || items2 > ARRAY_SIZE(buf32)) { |
| ERR(fp->handle, "invalid item count"); |
| return -1; |
| } |
| |
| rc = next_entry(buf32, fp, sizeof(uint32_t) * items2); |
| if (rc < 0) { |
| ERR(fp->handle, "truncated entry"); |
| return -1; |
| } |
| |
| items = 0; |
| val = le32_to_cpu(buf32[items++]); |
| key.source_type = (uint16_t) val; |
| if (key.source_type != val) { |
| ERR(fp->handle, "truncated source type"); |
| return -1; |
| } |
| val = le32_to_cpu(buf32[items++]); |
| key.target_type = (uint16_t) val; |
| if (key.target_type != val) { |
| ERR(fp->handle, "truncated target type"); |
| return -1; |
| } |
| val = le32_to_cpu(buf32[items++]); |
| key.target_class = (uint16_t) val; |
| if (key.target_class != val) { |
| ERR(fp->handle, "truncated target class"); |
| return -1; |
| } |
| |
| val = le32_to_cpu(buf32[items++]); |
| enabled = (val & AVTAB_ENABLED_OLD) ? AVTAB_ENABLED : 0; |
| |
| if (!(val & (AVTAB_AV | AVTAB_TYPE))) { |
| ERR(fp->handle, "null entry"); |
| return -1; |
| } |
| if ((val & AVTAB_AV) && (val & AVTAB_TYPE)) { |
| ERR(fp->handle, "entry has both access " |
| "vectors and types"); |
| return -1; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(spec_order); i++) { |
| if (val & spec_order[i]) { |
| key.specified = spec_order[i] | enabled; |
| datum.data = le32_to_cpu(buf32[items++]); |
| rc = insertf(a, &key, &datum, p); |
| if (rc) |
| return rc; |
| } |
| } |
| |
| if (items != items2) { |
| ERR(fp->handle, "entry only had %d items, " |
| "expected %d", items2, items); |
| return -1; |
| } |
| return 0; |
| } |
| |
| rc = next_entry(buf16, fp, sizeof(uint16_t) * 4); |
| if (rc < 0) { |
| ERR(fp->handle, "truncated entry"); |
| return -1; |
| } |
| items = 0; |
| key.source_type = le16_to_cpu(buf16[items++]); |
| key.target_type = le16_to_cpu(buf16[items++]); |
| key.target_class = le16_to_cpu(buf16[items++]); |
| key.specified = le16_to_cpu(buf16[items++]); |
| |
| set = 0; |
| for (i = 0; i < ARRAY_SIZE(spec_order); i++) { |
| if (key.specified & spec_order[i]) |
| set++; |
| } |
| if (!set || set > 1) { |
| ERR(fp->handle, "more than one specifier"); |
| return -1; |
| } |
| |
| rc = next_entry(buf32, fp, sizeof(uint32_t)); |
| if (rc < 0) { |
| ERR(fp->handle, "truncated entry"); |
| return -1; |
| } |
| datum.data = le32_to_cpu(*buf32); |
| return insertf(a, &key, &datum, p); |
| } |
| |
| static int avtab_insertf(avtab_t * a, avtab_key_t * k, avtab_datum_t * d, |
| void *p __attribute__ ((unused))) |
| { |
| return avtab_insert(a, k, d); |
| } |
| |
| int avtab_read(avtab_t * a, struct policy_file *fp, uint32_t vers) |
| { |
| unsigned int i; |
| int rc; |
| uint32_t buf[1]; |
| uint32_t nel; |
| |
| rc = next_entry(buf, fp, sizeof(uint32_t)); |
| if (rc < 0) { |
| ERR(fp->handle, "truncated table"); |
| goto bad; |
| } |
| nel = le32_to_cpu(buf[0]); |
| if (!nel) { |
| ERR(fp->handle, "table is empty"); |
| goto bad; |
| } |
| |
| rc = avtab_alloc(a, nel); |
| if (rc) { |
| ERR(fp->handle, "out of memory"); |
| goto bad; |
| } |
| |
| for (i = 0; i < nel; i++) { |
| rc = avtab_read_item(fp, vers, a, avtab_insertf, NULL); |
| if (rc) { |
| if (rc == SEPOL_ENOMEM) |
| ERR(fp->handle, "out of memory"); |
| if (rc == SEPOL_EEXIST) |
| ERR(fp->handle, "duplicate entry"); |
| ERR(fp->handle, "failed on entry %d of %u", i, nel); |
| goto bad; |
| } |
| } |
| |
| return 0; |
| |
| bad: |
| avtab_destroy(a); |
| return -1; |
| } |