| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vpx_ports/config.h" |
| #include "encodemb.h" |
| #include "encodemv.h" |
| #include "vp8/common/common.h" |
| #include "onyx_int.h" |
| #include "vp8/common/extend.h" |
| #include "vp8/common/entropymode.h" |
| #include "vp8/common/quant_common.h" |
| #include "segmentation.h" |
| #include "vp8/common/setupintrarecon.h" |
| #include "encodeintra.h" |
| #include "vp8/common/reconinter.h" |
| #include "rdopt.h" |
| #include "pickinter.h" |
| #include "vp8/common/findnearmv.h" |
| #include "vp8/common/reconintra.h" |
| #include <stdio.h> |
| #include <limits.h> |
| #include "vp8/common/subpixel.h" |
| #include "vpx_ports/vpx_timer.h" |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| #define RTCD(x) &cpi->common.rtcd.x |
| #define IF_RTCD(x) (x) |
| #else |
| #define RTCD(x) NULL |
| #define IF_RTCD(x) NULL |
| #endif |
| extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ; |
| |
| extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); |
| extern void vp8_auto_select_speed(VP8_COMP *cpi); |
| extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, |
| MACROBLOCK *x, |
| MB_ROW_COMP *mbr_ei, |
| int mb_row, |
| int count); |
| void vp8_build_block_offsets(MACROBLOCK *x); |
| void vp8_setup_block_ptrs(MACROBLOCK *x); |
| int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); |
| int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); |
| |
| #ifdef MODE_STATS |
| unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned int inter_uv_modes[4] = {0, 0, 0, 0}; |
| unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned int y_modes[5] = {0, 0, 0, 0, 0}; |
| unsigned int uv_modes[4] = {0, 0, 0, 0}; |
| unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| #endif |
| |
| static const int qrounding_factors[129] = |
| { |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48 |
| }; |
| |
| static const int qzbin_factors[129] = |
| { |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80 |
| }; |
| |
| static const int qrounding_factors_y2[129] = |
| { |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48, 48, 48, 48, 48, 48, 48, 48, |
| 48 |
| }; |
| |
| static const int qzbin_factors_y2[129] = |
| { |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 84, 84, 84, 84, 84, 84, 84, 84, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80, 80, 80, 80, 80, 80, 80, 80, |
| 80 |
| }; |
| |
| #define EXACT_QUANT |
| #ifdef EXACT_QUANT |
| static void vp8cx_invert_quant(int improved_quant, short *quant, |
| short *shift, short d) |
| { |
| if(improved_quant) |
| { |
| unsigned t; |
| int l; |
| t = d; |
| for(l = 0; t > 1; l++) |
| t>>=1; |
| t = 1 + (1<<(16+l))/d; |
| *quant = (short)(t - (1<<16)); |
| *shift = l; |
| } |
| else |
| { |
| *quant = (1 << 16) / d; |
| *shift = 0; |
| } |
| } |
| |
| void vp8cx_init_quantizer(VP8_COMP *cpi) |
| { |
| int i; |
| int quant_val; |
| int Q; |
| |
| int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44}; |
| |
| for (Q = 0; Q < QINDEX_RANGE; Q++) |
| { |
| // dc values |
| quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); |
| cpi->Y1quant_fast[Q][0] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + 0, |
| cpi->Y1quant_shift[Q] + 0, quant_val); |
| cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.Y1dequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); |
| cpi->Y2quant_fast[Q][0] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + 0, |
| cpi->Y2quant_shift[Q] + 0, quant_val); |
| cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; |
| cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7; |
| cpi->common.Y2dequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); |
| cpi->UVquant_fast[Q][0] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + 0, |
| cpi->UVquant_shift[Q] + 0, quant_val); |
| cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;; |
| cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.UVdequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| // all the ac values = ; |
| for (i = 1; i < 16; i++) |
| { |
| int rc = vp8_default_zig_zag1d[i]; |
| |
| quant_val = vp8_ac_yquant(Q); |
| cpi->Y1quant_fast[Q][rc] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + rc, |
| cpi->Y1quant_shift[Q] + rc, quant_val); |
| cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.Y1dequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| |
| quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); |
| cpi->Y2quant_fast[Q][rc] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + rc, |
| cpi->Y2quant_shift[Q] + rc, quant_val); |
| cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; |
| cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7; |
| cpi->common.Y2dequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| |
| quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); |
| cpi->UVquant_fast[Q][rc] = (1 << 16) / quant_val; |
| vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + rc, |
| cpi->UVquant_shift[Q] + rc, quant_val); |
| cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.UVdequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| } |
| } |
| } |
| #else |
| void vp8cx_init_quantizer(VP8_COMP *cpi) |
| { |
| int i; |
| int quant_val; |
| int Q; |
| |
| int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44}; |
| |
| for (Q = 0; Q < QINDEX_RANGE; Q++) |
| { |
| // dc values |
| quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); |
| cpi->Y1quant[Q][0] = (1 << 16) / quant_val; |
| cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.Y1dequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); |
| cpi->Y2quant[Q][0] = (1 << 16) / quant_val; |
| cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; |
| cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7; |
| cpi->common.Y2dequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); |
| cpi->UVquant[Q][0] = (1 << 16) / quant_val; |
| cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;; |
| cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.UVdequant[Q][0] = quant_val; |
| cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; |
| |
| // all the ac values = ; |
| for (i = 1; i < 16; i++) |
| { |
| int rc = vp8_default_zig_zag1d[i]; |
| |
| quant_val = vp8_ac_yquant(Q); |
| cpi->Y1quant[Q][rc] = (1 << 16) / quant_val; |
| cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.Y1dequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| |
| quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); |
| cpi->Y2quant[Q][rc] = (1 << 16) / quant_val; |
| cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; |
| cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7; |
| cpi->common.Y2dequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| |
| quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); |
| cpi->UVquant[Q][rc] = (1 << 16) / quant_val; |
| cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; |
| cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; |
| cpi->common.UVdequant[Q][rc] = quant_val; |
| cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7; |
| } |
| } |
| } |
| #endif |
| void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| int i; |
| int QIndex; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int zbin_extra; |
| |
| // Select the baseline MB Q index. |
| if (xd->segmentation_enabled) |
| { |
| // Abs Value |
| if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) |
| |
| QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id]; |
| // Delta Value |
| else |
| { |
| QIndex = cpi->common.base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id]; |
| QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range |
| } |
| } |
| else |
| QIndex = cpi->common.base_qindex; |
| |
| // Y |
| zbin_extra = (cpi->common.Y1dequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; |
| |
| for (i = 0; i < 16; i++) |
| { |
| x->block[i].quant = cpi->Y1quant[QIndex]; |
| x->block[i].quant_fast = cpi->Y1quant_fast[QIndex]; |
| x->block[i].quant_shift = cpi->Y1quant_shift[QIndex]; |
| x->block[i].zbin = cpi->Y1zbin[QIndex]; |
| x->block[i].round = cpi->Y1round[QIndex]; |
| x->e_mbd.block[i].dequant = cpi->common.Y1dequant[QIndex]; |
| x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[QIndex]; |
| x->block[i].zbin_extra = (short)zbin_extra; |
| } |
| |
| // UV |
| zbin_extra = (cpi->common.UVdequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; |
| |
| for (i = 16; i < 24; i++) |
| { |
| x->block[i].quant = cpi->UVquant[QIndex]; |
| x->block[i].quant_fast = cpi->UVquant_fast[QIndex]; |
| x->block[i].quant_shift = cpi->UVquant_shift[QIndex]; |
| x->block[i].zbin = cpi->UVzbin[QIndex]; |
| x->block[i].round = cpi->UVround[QIndex]; |
| x->e_mbd.block[i].dequant = cpi->common.UVdequant[QIndex]; |
| x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[QIndex]; |
| x->block[i].zbin_extra = (short)zbin_extra; |
| } |
| |
| // Y2 |
| zbin_extra = (cpi->common.Y2dequant[QIndex][1] * ((cpi->zbin_over_quant / 2) + cpi->zbin_mode_boost)) >> 7; |
| x->block[24].quant_fast = cpi->Y2quant_fast[QIndex]; |
| x->block[24].quant = cpi->Y2quant[QIndex]; |
| x->block[24].quant_shift = cpi->Y2quant_shift[QIndex]; |
| x->block[24].zbin = cpi->Y2zbin[QIndex]; |
| x->block[24].round = cpi->Y2round[QIndex]; |
| x->e_mbd.block[24].dequant = cpi->common.Y2dequant[QIndex]; |
| x->block[24].zrun_zbin_boost = cpi->zrun_zbin_boost_y2[QIndex]; |
| x->block[24].zbin_extra = (short)zbin_extra; |
| |
| /* save this macroblock QIndex for vp8_update_zbin_extra() */ |
| x->q_index = QIndex; |
| } |
| void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| int i; |
| int QIndex = x->q_index; |
| int zbin_extra; |
| |
| // Y |
| zbin_extra = (cpi->common.Y1dequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; |
| for (i = 0; i < 16; i++) |
| { |
| x->block[i].zbin_extra = (short)zbin_extra; |
| } |
| |
| // UV |
| zbin_extra = (cpi->common.UVdequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; |
| for (i = 16; i < 24; i++) |
| { |
| x->block[i].zbin_extra = (short)zbin_extra; |
| } |
| |
| // Y2 |
| zbin_extra = (cpi->common.Y2dequant[QIndex][1] * ((cpi->zbin_over_quant / 2) + cpi->zbin_mode_boost)) >> 7; |
| x->block[24].zbin_extra = (short)zbin_extra; |
| } |
| |
| void vp8cx_frame_init_quantizer(VP8_COMP *cpi) |
| { |
| // Clear Zbin mode boost for default case |
| cpi->zbin_mode_boost = 0; |
| |
| // MB level quantizer setup |
| vp8cx_mb_init_quantizer(cpi, &cpi->mb); |
| } |
| |
| |
| /* activity_avg must be positive, or flat regions could get a zero weight |
| * (infinite lambda), which confounds analysis. |
| * This also avoids the need for divide by zero checks in |
| * vp8_activity_masking(). |
| */ |
| #define VP8_ACTIVITY_AVG_MIN (64) |
| |
| /* This is used as a reference when computing the source variance for the |
| * purposes of activity masking. |
| * Eventually this should be replaced by custom no-reference routines, |
| * which will be faster. |
| */ |
| static const unsigned char VP8_VAR_OFFS[16]= |
| { |
| 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 |
| }; |
| |
| unsigned int vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| unsigned int act; |
| unsigned int sse; |
| int sum; |
| unsigned int a; |
| unsigned int b; |
| /* TODO: This could also be done over smaller areas (8x8), but that would |
| * require extensive changes elsewhere, as lambda is assumed to be fixed |
| * over an entire MB in most of the code. |
| * Another option is to compute four 8x8 variances, and pick a single |
| * lambda using a non-linear combination (e.g., the smallest, or second |
| * smallest, etc.). |
| */ |
| VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, |
| x->src.y_stride, VP8_VAR_OFFS, 0, &sse, &sum); |
| /* This requires a full 32 bits of precision. */ |
| act = (sse<<8) - sum*sum; |
| /* Drop 4 to give us some headroom to work with. */ |
| act = (act + 8) >> 4; |
| /* If the region is flat, lower the activity some more. */ |
| if (act < 8<<12) |
| act = act < 5<<12 ? act : 5<<12; |
| /* TODO: For non-flat regions, edge regions should receive less masking |
| * than textured regions, but identifying edge regions quickly and |
| * reliably enough is still a subject of experimentation. |
| * This will be most noticable near edges with a complex shape (e.g., |
| * text), but the 4x4 transform size should make this less of a problem |
| * than it would be for an 8x8 transform. |
| */ |
| /* Apply the masking to the RD multiplier. */ |
| a = act + 4*cpi->activity_avg; |
| b = 4*act + cpi->activity_avg; |
| x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a); |
| return act; |
| } |
| |
| |
| |
| static |
| void encode_mb_row(VP8_COMP *cpi, |
| VP8_COMMON *cm, |
| int mb_row, |
| MACROBLOCK *x, |
| MACROBLOCKD *xd, |
| TOKENEXTRA **tp, |
| int *segment_counts, |
| int *totalrate) |
| { |
| INT64 activity_sum = 0; |
| int i; |
| int recon_yoffset, recon_uvoffset; |
| int mb_col; |
| int ref_fb_idx = cm->lst_fb_idx; |
| int dst_fb_idx = cm->new_fb_idx; |
| int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; |
| int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; |
| int seg_map_index = (mb_row * cpi->common.mb_cols); |
| |
| #if CONFIG_MULTITHREAD |
| const int nsync = cpi->mt_sync_range; |
| const int rightmost_col = cm->mb_cols - 1; |
| volatile const int *last_row_current_mb_col; |
| |
| if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) |
| last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; |
| else |
| last_row_current_mb_col = &rightmost_col; |
| #endif |
| |
| // reset above block coeffs |
| xd->above_context = cm->above_context; |
| |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * 8); |
| |
| cpi->tplist[mb_row].start = *tp; |
| //printf("Main mb_row = %d\n", mb_row); |
| |
| // Distance of Mb to the top & bottom edges, specified in 1/8th pel |
| // units as they are always compared to values that are in 1/8th pel units |
| xd->mb_to_top_edge = -((mb_row * 16) << 3); |
| xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; |
| |
| // Set up limit values for vertical motion vector components |
| // to prevent them extending beyond the UMV borders |
| x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) |
| + (VP8BORDERINPIXELS - 16); |
| |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| // Distance of Mb to the left & right edges, specified in |
| // 1/8th pel units as they are always compared to values |
| // that are in 1/8th pel units |
| xd->mb_to_left_edge = -((mb_col * 16) << 3); |
| xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; |
| |
| // Set up limit values for horizontal motion vector components |
| // to prevent them extending beyond the UMV borders |
| x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) |
| + (VP8BORDERINPIXELS - 16); |
| |
| xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; |
| xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; |
| xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| |
| x->rddiv = cpi->RDDIV; |
| x->rdmult = cpi->RDMULT; |
| |
| #if CONFIG_MULTITHREAD |
| if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) |
| { |
| if ((mb_col & (nsync - 1)) == 0) |
| { |
| while (mb_col > (*last_row_current_mb_col - nsync) |
| && (*last_row_current_mb_col) != (cm->mb_cols - 1)) |
| { |
| x86_pause_hint(); |
| thread_sleep(0); |
| } |
| } |
| } |
| #endif |
| |
| if(cpi->oxcf.tuning == VP8_TUNE_SSIM) |
| activity_sum += vp8_activity_masking(cpi, x); |
| |
| // Is segmentation enabled |
| // MB level adjutment to quantizer |
| if (xd->segmentation_enabled) |
| { |
| // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) |
| if (cpi->segmentation_map[seg_map_index+mb_col] <= 3) |
| xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[seg_map_index+mb_col]; |
| else |
| xd->mode_info_context->mbmi.segment_id = 0; |
| |
| vp8cx_mb_init_quantizer(cpi, x); |
| } |
| else |
| xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default |
| |
| x->active_ptr = cpi->active_map + seg_map_index + mb_col; |
| |
| if (cm->frame_type == KEY_FRAME) |
| { |
| *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); |
| #ifdef MODE_STATS |
| y_modes[xd->mbmi.mode] ++; |
| #endif |
| } |
| else |
| { |
| *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); |
| |
| #ifdef MODE_STATS |
| inter_y_modes[xd->mbmi.mode] ++; |
| |
| if (xd->mbmi.mode == SPLITMV) |
| { |
| int b; |
| |
| for (b = 0; b < xd->mbmi.partition_count; b++) |
| { |
| inter_b_modes[x->partition->bmi[b].mode] ++; |
| } |
| } |
| |
| #endif |
| |
| // Count of last ref frame 0,0 useage |
| if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) |
| cpi->inter_zz_count ++; |
| |
| // Special case code for cyclic refresh |
| // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode |
| // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map |
| if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) |
| { |
| cpi->segmentation_map[seg_map_index+mb_col] = xd->mode_info_context->mbmi.segment_id; |
| |
| // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): |
| // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) |
| // else mark it as dirty (1). |
| if (xd->mode_info_context->mbmi.segment_id) |
| cpi->cyclic_refresh_map[seg_map_index+mb_col] = -1; |
| else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) |
| { |
| if (cpi->cyclic_refresh_map[seg_map_index+mb_col] == 1) |
| cpi->cyclic_refresh_map[seg_map_index+mb_col] = 0; |
| } |
| else |
| cpi->cyclic_refresh_map[seg_map_index+mb_col] = 1; |
| |
| } |
| } |
| |
| cpi->tplist[mb_row].stop = *tp; |
| |
| x->gf_active_ptr++; // Increment pointer into gf useage flags structure for next mb |
| |
| for (i = 0; i < 16; i++) |
| vpx_memcpy(&xd->mode_info_context->bmi[i], &xd->block[i].bmi, sizeof(xd->block[i].bmi)); |
| |
| // adjust to the next column of macroblocks |
| x->src.y_buffer += 16; |
| x->src.u_buffer += 8; |
| x->src.v_buffer += 8; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += 8; |
| |
| // Keep track of segment useage |
| segment_counts[xd->mode_info_context->mbmi.segment_id] ++; |
| |
| // skip to next mb |
| xd->mode_info_context++; |
| x->partition_info++; |
| |
| xd->above_context++; |
| #if CONFIG_MULTITHREAD |
| if (cpi->b_multi_threaded != 0) |
| { |
| cpi->mt_current_mb_col[mb_row] = mb_col; |
| } |
| #endif |
| } |
| |
| //extend the recon for intra prediction |
| vp8_extend_mb_row( |
| &cm->yv12_fb[dst_fb_idx], |
| xd->dst.y_buffer + 16, |
| xd->dst.u_buffer + 8, |
| xd->dst.v_buffer + 8); |
| |
| // this is to account for the border |
| xd->mode_info_context++; |
| x->partition_info++; |
| x->activity_sum += activity_sum; |
| |
| #if CONFIG_MULTITHREAD |
| if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1)) |
| { |
| sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ |
| } |
| #endif |
| } |
| |
| void vp8_encode_frame(VP8_COMP *cpi) |
| { |
| int mb_row; |
| MACROBLOCK *const x = & cpi->mb; |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & x->e_mbd; |
| |
| TOKENEXTRA *tp = cpi->tok; |
| int segment_counts[MAX_MB_SEGMENTS]; |
| int totalrate; |
| |
| // Functions setup for all frame types so we can use MC in AltRef |
| if (cm->mcomp_filter_type == SIXTAP) |
| { |
| xd->subpixel_predict = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap4x4); |
| xd->subpixel_predict8x4 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap8x4); |
| xd->subpixel_predict8x8 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap8x8); |
| xd->subpixel_predict16x16 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, sixtap16x16); |
| } |
| else |
| { |
| xd->subpixel_predict = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear4x4); |
| xd->subpixel_predict8x4 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear8x4); |
| xd->subpixel_predict8x8 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear8x8); |
| xd->subpixel_predict16x16 = SUBPIX_INVOKE( |
| &cpi->common.rtcd.subpix, bilinear16x16); |
| } |
| |
| x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Point to base of GF active flags data structure |
| |
| x->vector_range = 32; |
| |
| // Count of MBs using the alternate Q if any |
| cpi->alt_qcount = 0; |
| |
| // Reset frame count of inter 0,0 motion vector useage. |
| cpi->inter_zz_count = 0; |
| |
| vpx_memset(segment_counts, 0, sizeof(segment_counts)); |
| |
| cpi->prediction_error = 0; |
| cpi->intra_error = 0; |
| cpi->skip_true_count = 0; |
| cpi->skip_false_count = 0; |
| |
| #if 0 |
| // Experimental code |
| cpi->frame_distortion = 0; |
| cpi->last_mb_distortion = 0; |
| #endif |
| |
| totalrate = 0; |
| |
| x->partition_info = x->pi; |
| |
| xd->mode_info_context = cm->mi; |
| xd->mode_info_stride = cm->mode_info_stride; |
| |
| xd->frame_type = cm->frame_type; |
| |
| xd->frames_since_golden = cm->frames_since_golden; |
| xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; |
| vp8_zero(cpi->MVcount); |
| // vp8_zero( Contexts) |
| vp8_zero(cpi->coef_counts); |
| |
| // reset intra mode contexts |
| if (cm->frame_type == KEY_FRAME) |
| vp8_init_mbmode_probs(cm); |
| |
| |
| vp8cx_frame_init_quantizer(cpi); |
| |
| if (cpi->compressor_speed == 2) |
| { |
| if (cpi->oxcf.cpu_used < 0) |
| cpi->Speed = -(cpi->oxcf.cpu_used); |
| else |
| vp8_auto_select_speed(cpi); |
| } |
| |
| vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
| vp8cx_initialize_me_consts(cpi, cm->base_qindex); |
| |
| // Copy data over into macro block data sturctures. |
| |
| x->src = * cpi->Source; |
| xd->pre = cm->yv12_fb[cm->lst_fb_idx]; |
| xd->dst = cm->yv12_fb[cm->new_fb_idx]; |
| |
| // set up frame new frame for intra coded blocks |
| |
| vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); |
| |
| vp8_build_block_offsets(x); |
| |
| vp8_setup_block_dptrs(&x->e_mbd); |
| |
| vp8_setup_block_ptrs(x); |
| |
| x->activity_sum = 0; |
| |
| xd->mode_info_context->mbmi.mode = DC_PRED; |
| xd->mode_info_context->mbmi.uv_mode = DC_PRED; |
| |
| xd->left_context = &cm->left_context; |
| |
| vp8_zero(cpi->count_mb_ref_frame_usage) |
| vp8_zero(cpi->ymode_count) |
| vp8_zero(cpi->uv_mode_count) |
| |
| x->mvc = cm->fc.mvc; |
| |
| vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); |
| |
| { |
| struct vpx_usec_timer emr_timer; |
| vpx_usec_timer_start(&emr_timer); |
| |
| #if CONFIG_MULTITHREAD |
| if (cpi->b_multi_threaded) |
| { |
| int i; |
| |
| vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); |
| |
| for (i = 0; i < cm->mb_rows; i++) |
| cpi->mt_current_mb_col[i] = -1; |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| sem_post(&cpi->h_event_start_encoding[i]); |
| } |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) |
| { |
| vp8_zero(cm->left_context) |
| |
| tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); |
| |
| encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; |
| |
| xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; |
| x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; |
| |
| } |
| |
| sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */ |
| |
| cpi->tok_count = 0; |
| |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) |
| { |
| cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; |
| } |
| |
| if (xd->segmentation_enabled) |
| { |
| int i, j; |
| |
| if (xd->segmentation_enabled) |
| { |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| for (j = 0; j < 4; j++) |
| segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; |
| } |
| } |
| } |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| totalrate += cpi->mb_row_ei[i].totalrate; |
| } |
| |
| for (i = 0; i < cpi->encoding_thread_count; i++) |
| { |
| x->activity_sum += cpi->mb_row_ei[i].mb.activity_sum; |
| } |
| |
| } |
| else |
| #endif |
| { |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| |
| vp8_zero(cm->left_context) |
| |
| encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| } |
| |
| cpi->tok_count = tp - cpi->tok; |
| |
| } |
| |
| vpx_usec_timer_mark(&emr_timer); |
| cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); |
| |
| } |
| |
| |
| // Work out the segment probabilites if segmentation is enabled |
| if (xd->segmentation_enabled) |
| { |
| int tot_count; |
| int i; |
| |
| // Set to defaults |
| vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs)); |
| |
| tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; |
| |
| if (tot_count) |
| { |
| xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; |
| |
| tot_count = segment_counts[0] + segment_counts[1]; |
| |
| if (tot_count > 0) |
| { |
| xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; |
| } |
| |
| tot_count = segment_counts[2] + segment_counts[3]; |
| |
| if (tot_count > 0) |
| xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; |
| |
| // Zero probabilities not allowed |
| for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++) |
| { |
| if (xd->mb_segment_tree_probs[i] == 0) |
| xd->mb_segment_tree_probs[i] = 1; |
| } |
| } |
| } |
| |
| // 256 rate units to the bit |
| cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES |
| |
| // Make a note of the percentage MBs coded Intra. |
| if (cm->frame_type == KEY_FRAME) |
| { |
| cpi->this_frame_percent_intra = 100; |
| } |
| else |
| { |
| int tot_modes; |
| |
| tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] |
| + cpi->count_mb_ref_frame_usage[LAST_FRAME] |
| + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] |
| + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; |
| |
| if (tot_modes) |
| cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; |
| |
| } |
| |
| #if 0 |
| { |
| int cnt = 0; |
| int flag[2] = {0, 0}; |
| |
| for (cnt = 0; cnt < MVPcount; cnt++) |
| { |
| if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) |
| { |
| flag[0] = 1; |
| vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); |
| break; |
| } |
| } |
| |
| for (cnt = 0; cnt < MVPcount; cnt++) |
| { |
| if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) |
| { |
| flag[1] = 1; |
| vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); |
| break; |
| } |
| } |
| |
| if (flag[0] || flag[1]) |
| vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
| } |
| #endif |
| |
| // Adjust the projected reference frame useage probability numbers to reflect |
| // what we have just seen. This may be usefull when we make multiple itterations |
| // of the recode loop rather than continuing to use values from the previous frame. |
| if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) |
| { |
| const int *const rfct = cpi->count_mb_ref_frame_usage; |
| const int rf_intra = rfct[INTRA_FRAME]; |
| const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; |
| |
| if ((rf_intra + rf_inter) > 0) |
| { |
| cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); |
| |
| if (cpi->prob_intra_coded < 1) |
| cpi->prob_intra_coded = 1; |
| |
| if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) |
| { |
| cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; |
| |
| if (cpi->prob_last_coded < 1) |
| cpi->prob_last_coded = 1; |
| |
| cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) |
| ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; |
| |
| if (cpi->prob_gf_coded < 1) |
| cpi->prob_gf_coded = 1; |
| } |
| } |
| } |
| |
| #if 0 |
| // Keep record of the total distortion this time around for future use |
| cpi->last_frame_distortion = cpi->frame_distortion; |
| #endif |
| |
| /* Update the average activity for the next frame. |
| * This is feed-forward for now; it could also be saved in two-pass, or |
| * done during lookahead when that is eventually added. |
| */ |
| cpi->activity_avg = (unsigned int )(x->activity_sum/cpi->common.MBs); |
| if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) |
| cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; |
| |
| } |
| void vp8_setup_block_ptrs(MACROBLOCK *x) |
| { |
| int r, c; |
| int i; |
| |
| for (r = 0; r < 4; r++) |
| { |
| for (c = 0; c < 4; c++) |
| { |
| x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; |
| } |
| } |
| |
| for (r = 0; r < 2; r++) |
| { |
| for (c = 0; c < 2; c++) |
| { |
| x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; |
| } |
| } |
| |
| |
| for (r = 0; r < 2; r++) |
| { |
| for (c = 0; c < 2; c++) |
| { |
| x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; |
| } |
| } |
| |
| x->block[24].src_diff = x->src_diff + 384; |
| |
| |
| for (i = 0; i < 25; i++) |
| { |
| x->block[i].coeff = x->coeff + i * 16; |
| } |
| } |
| |
| void vp8_build_block_offsets(MACROBLOCK *x) |
| { |
| int block = 0; |
| int br, bc; |
| |
| vp8_build_block_doffsets(&x->e_mbd); |
| |
| // y blocks |
| for (br = 0; br < 4; br++) |
| { |
| for (bc = 0; bc < 4; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| this_block->base_src = &x->src.y_buffer; |
| this_block->src_stride = x->src.y_stride; |
| this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| ++block; |
| } |
| } |
| |
| // u blocks |
| for (br = 0; br < 2; br++) |
| { |
| for (bc = 0; bc < 2; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| this_block->base_src = &x->src.u_buffer; |
| this_block->src_stride = x->src.uv_stride; |
| this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| ++block; |
| } |
| } |
| |
| // v blocks |
| for (br = 0; br < 2; br++) |
| { |
| for (bc = 0; bc < 2; bc++) |
| { |
| BLOCK *this_block = &x->block[block]; |
| this_block->base_src = &x->src.v_buffer; |
| this_block->src_stride = x->src.uv_stride; |
| this_block->src = 4 * br * this_block->src_stride + 4 * bc; |
| ++block; |
| } |
| } |
| } |
| |
| static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) |
| { |
| const MACROBLOCKD *xd = & x->e_mbd; |
| const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; |
| const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; |
| |
| #ifdef MODE_STATS |
| const int is_key = cpi->common.frame_type == KEY_FRAME; |
| |
| ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; |
| |
| if (m == B_PRED) |
| { |
| unsigned int *const bct = is_key ? b_modes : inter_b_modes; |
| |
| int b = 0; |
| |
| do |
| { |
| ++ bct[xd->block[b].bmi.mode]; |
| } |
| while (++b < 16); |
| } |
| |
| #endif |
| |
| ++cpi->ymode_count[m]; |
| ++cpi->uv_mode_count[uvm]; |
| |
| } |
| int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) |
| { |
| int Error4x4, Error16x16, error_uv; |
| int rate4x4, rate16x16, rateuv; |
| int dist4x4, dist16x16, distuv; |
| int rate = 0; |
| int rate4x4_tokenonly = 0; |
| int rate16x16_tokenonly = 0; |
| int rateuv_tokenonly = 0; |
| |
| x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| if (cpi->sf.RD && cpi->compressor_speed != 2) |
| { |
| error_uv = vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv); |
| rate += rateuv; |
| |
| Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16); |
| |
| Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, Error16x16); |
| |
| rate += (Error4x4 < Error16x16) ? rate4x4 : rate16x16; |
| } |
| else |
| #endif |
| { |
| int rate2, best_distortion; |
| MB_PREDICTION_MODE mode, best_mode = DC_PRED; |
| int this_rd; |
| Error16x16 = INT_MAX; |
| |
| vp8_pick_intra_mbuv_mode(x); |
| |
| for (mode = DC_PRED; mode <= TM_PRED; mode ++) |
| { |
| int distortion2; |
| |
| x->e_mbd.mode_info_context->mbmi.mode = mode; |
| RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby) |
| (&x->e_mbd); |
| distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff); |
| rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode]; |
| this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); |
| |
| if (Error16x16 > this_rd) |
| { |
| Error16x16 = this_rd; |
| best_mode = mode; |
| best_distortion = distortion2; |
| } |
| } |
| x->e_mbd.mode_info_context->mbmi.mode = best_mode; |
| |
| Error4x4 = vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &best_distortion); |
| } |
| |
| if (Error4x4 < Error16x16) |
| { |
| x->e_mbd.mode_info_context->mbmi.mode = B_PRED; |
| vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| else |
| { |
| vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| |
| vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); |
| sum_intra_stats(cpi, x); |
| vp8_tokenize_mb(cpi, &x->e_mbd, t); |
| |
| return rate; |
| } |
| #ifdef SPEEDSTATS |
| extern int cnt_pm; |
| #endif |
| |
| extern void vp8_fix_contexts(MACROBLOCKD *x); |
| |
| int vp8cx_encode_inter_macroblock |
| ( |
| VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, |
| int recon_yoffset, int recon_uvoffset |
| ) |
| { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int inter_error; |
| int intra_error = 0; |
| int rate; |
| int distortion; |
| |
| x->skip = 0; |
| |
| if (xd->segmentation_enabled) |
| x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; |
| else |
| x->encode_breakout = cpi->oxcf.encode_breakout; |
| |
| #if !(CONFIG_REALTIME_ONLY) |
| |
| if (cpi->sf.RD) |
| { |
| int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled; |
| |
| /* Are we using the fast quantizer for the mode selection? */ |
| if(cpi->sf.use_fastquant_for_pick) |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); |
| |
| /* the fast quantizer does not use zbin_extra, so |
| * do not recalculate */ |
| cpi->zbin_mode_boost_enabled = 0; |
| } |
| inter_error = vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); |
| |
| /* switch back to the regular quantizer for the encode */ |
| if (cpi->sf.improved_quant) |
| { |
| cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); |
| } |
| |
| /* restore cpi->zbin_mode_boost_enabled */ |
| cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled; |
| |
| } |
| else |
| #endif |
| inter_error = vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); |
| |
| |
| cpi->prediction_error += inter_error; |
| cpi->intra_error += intra_error; |
| |
| #if 0 |
| // Experimental RD code |
| cpi->frame_distortion += distortion; |
| cpi->last_mb_distortion = distortion; |
| #endif |
| |
| // MB level adjutment to quantizer setup |
| if (xd->segmentation_enabled) |
| { |
| // If cyclic update enabled |
| if (cpi->cyclic_refresh_mode_enabled) |
| { |
| // Clear segment_id back to 0 if not coded (last frame 0,0) |
| if ((xd->mode_info_context->mbmi.segment_id == 1) && |
| ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV))) |
| { |
| xd->mode_info_context->mbmi.segment_id = 0; |
| |
| /* segment_id changed, so update */ |
| vp8cx_mb_init_quantizer(cpi, x); |
| } |
| } |
| } |
| |
| { |
| // Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise |
| if (cpi->zbin_mode_boost_enabled) |
| { |
| if ( xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME ) |
| cpi->zbin_mode_boost = 0; |
| else |
| { |
| if (xd->mode_info_context->mbmi.mode == ZEROMV) |
| { |
| if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) |
| cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; |
| else |
| cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; |
| } |
| else if (xd->mode_info_context->mbmi.mode == SPLITMV) |
| cpi->zbin_mode_boost = 0; |
| else |
| cpi->zbin_mode_boost = MV_ZBIN_BOOST; |
| } |
| } |
| else |
| cpi->zbin_mode_boost = 0; |
| |
| vp8_update_zbin_extra(cpi, x); |
| } |
| |
| cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++; |
| |
| if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) |
| { |
| vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); |
| |
| if (xd->mode_info_context->mbmi.mode == B_PRED) |
| { |
| vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| else |
| { |
| vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| |
| sum_intra_stats(cpi, x); |
| } |
| else |
| { |
| MV best_ref_mv; |
| MV nearest, nearby; |
| int mdcounts[4]; |
| int ref_fb_idx; |
| |
| vp8_find_near_mvs(xd, xd->mode_info_context, |
| &nearest, &nearby, &best_ref_mv, mdcounts, xd->mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias); |
| |
| vp8_build_uvmvs(xd, cpi->common.full_pixel); |
| |
| if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) |
| ref_fb_idx = cpi->common.lst_fb_idx; |
| else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) |
| ref_fb_idx = cpi->common.gld_fb_idx; |
| else |
| ref_fb_idx = cpi->common.alt_fb_idx; |
| |
| xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; |
| xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; |
| xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; |
| |
| if (xd->mode_info_context->mbmi.mode == SPLITMV) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| { |
| if (xd->block[i].bmi.mode == NEW4X4) |
| { |
| cpi->MVcount[0][mv_max+((xd->block[i].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; |
| cpi->MVcount[1][mv_max+((xd->block[i].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; |
| } |
| } |
| } |
| else if (xd->mode_info_context->mbmi.mode == NEWMV) |
| { |
| cpi->MVcount[0][mv_max+((xd->block[0].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; |
| cpi->MVcount[1][mv_max+((xd->block[0].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; |
| } |
| |
| if (!x->skip && !x->e_mbd.mode_info_context->mbmi.force_no_skip) |
| { |
| vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); |
| |
| // Clear mb_skip_coeff if mb_no_coeff_skip is not set |
| if (!cpi->common.mb_no_coeff_skip) |
| xd->mode_info_context->mbmi.mb_skip_coeff = 0; |
| |
| } |
| else |
| vp8_stuff_inter16x16(x); |
| } |
| |
| if (!x->skip) |
| vp8_tokenize_mb(cpi, xd, t); |
| else |
| { |
| if (cpi->common.mb_no_coeff_skip) |
| { |
| if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV) |
| xd->mode_info_context->mbmi.dc_diff = 0; |
| else |
| xd->mode_info_context->mbmi.dc_diff = 1; |
| |
| xd->mode_info_context->mbmi.mb_skip_coeff = 1; |
| cpi->skip_true_count ++; |
| vp8_fix_contexts(xd); |
| } |
| else |
| { |
| vp8_stuff_mb(cpi, xd, t); |
| xd->mode_info_context->mbmi.mb_skip_coeff = 0; |
| cpi->skip_false_count ++; |
| } |
| } |
| |
| return rate; |
| } |