| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "vpx_scale/yv12config.h" |
| #include "math.h" |
| |
| #define C1 (float)(64 * 64 * 0.01*255*0.01*255) |
| #define C2 (float)(64 * 64 * 0.03*255*0.03*255) |
| |
| static int width_y; |
| static int height_y; |
| static int height_uv; |
| static int width_uv; |
| static int stride_uv; |
| static int stride; |
| static int lumimask; |
| static int luminance; |
| static double plane_summed_weights = 0; |
| |
| static short img12_sum_block[8*4096*4096*2] ; |
| |
| static short img1_sum[8*4096*2]; |
| static short img2_sum[8*4096*2]; |
| static int img1_sq_sum[8*4096*2]; |
| static int img2_sq_sum[8*4096*2]; |
| static int img12_mul_sum[8*4096*2]; |
| |
| |
| double vp8_similarity |
| ( |
| int mu_x, |
| int mu_y, |
| int pre_mu_x2, |
| int pre_mu_y2, |
| int pre_mu_xy2 |
| ) |
| { |
| int mu_x2, mu_y2, mu_xy, theta_x2, theta_y2, theta_xy; |
| |
| mu_x2 = mu_x * mu_x; |
| mu_y2 = mu_y * mu_y; |
| mu_xy = mu_x * mu_y; |
| |
| theta_x2 = 64 * pre_mu_x2 - mu_x2; |
| theta_y2 = 64 * pre_mu_y2 - mu_y2; |
| theta_xy = 64 * pre_mu_xy2 - mu_xy; |
| |
| return (2 * mu_xy + C1) * (2 * theta_xy + C2) / ((mu_x2 + mu_y2 + C1) * (theta_x2 + theta_y2 + C2)); |
| } |
| |
| double vp8_ssim |
| ( |
| const unsigned char *img1, |
| const unsigned char *img2, |
| int stride_img1, |
| int stride_img2, |
| int width, |
| int height |
| ) |
| { |
| int x, y, x2, y2, img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block, temp; |
| |
| double plane_quality, weight, mean; |
| |
| short *img1_sum_ptr1, *img1_sum_ptr2; |
| short *img2_sum_ptr1, *img2_sum_ptr2; |
| int *img1_sq_sum_ptr1, *img1_sq_sum_ptr2; |
| int *img2_sq_sum_ptr1, *img2_sq_sum_ptr2; |
| int *img12_mul_sum_ptr1, *img12_mul_sum_ptr2; |
| |
| plane_quality = 0; |
| |
| if (lumimask) |
| plane_summed_weights = 0.0f; |
| else |
| plane_summed_weights = (height - 7) * (width - 7); |
| |
| //some prologue for the main loop |
| temp = 8 * width; |
| |
| img1_sum_ptr1 = img1_sum + temp; |
| img2_sum_ptr1 = img2_sum + temp; |
| img1_sq_sum_ptr1 = img1_sq_sum + temp; |
| img2_sq_sum_ptr1 = img2_sq_sum + temp; |
| img12_mul_sum_ptr1 = img12_mul_sum + temp; |
| |
| for (x = 0; x < width; x++) |
| { |
| img1_sum[x] = img1[x]; |
| img2_sum[x] = img2[x]; |
| img1_sq_sum[x] = img1[x] * img1[x]; |
| img2_sq_sum[x] = img2[x] * img2[x]; |
| img12_mul_sum[x] = img1[x] * img2[x]; |
| |
| img1_sum_ptr1[x] = 0; |
| img2_sum_ptr1[x] = 0; |
| img1_sq_sum_ptr1[x] = 0; |
| img2_sq_sum_ptr1[x] = 0; |
| img12_mul_sum_ptr1[x] = 0; |
| } |
| |
| //the main loop |
| for (y = 1; y < height; y++) |
| { |
| img1 += stride_img1; |
| img2 += stride_img2; |
| |
| temp = (y - 1) % 9 * width; |
| |
| img1_sum_ptr1 = img1_sum + temp; |
| img2_sum_ptr1 = img2_sum + temp; |
| img1_sq_sum_ptr1 = img1_sq_sum + temp; |
| img2_sq_sum_ptr1 = img2_sq_sum + temp; |
| img12_mul_sum_ptr1 = img12_mul_sum + temp; |
| |
| temp = y % 9 * width; |
| |
| img1_sum_ptr2 = img1_sum + temp; |
| img2_sum_ptr2 = img2_sum + temp; |
| img1_sq_sum_ptr2 = img1_sq_sum + temp; |
| img2_sq_sum_ptr2 = img2_sq_sum + temp; |
| img12_mul_sum_ptr2 = img12_mul_sum + temp; |
| |
| for (x = 0; x < width; x++) |
| { |
| img1_sum_ptr2[x] = img1_sum_ptr1[x] + img1[x]; |
| img2_sum_ptr2[x] = img2_sum_ptr1[x] + img2[x]; |
| img1_sq_sum_ptr2[x] = img1_sq_sum_ptr1[x] + img1[x] * img1[x]; |
| img2_sq_sum_ptr2[x] = img2_sq_sum_ptr1[x] + img2[x] * img2[x]; |
| img12_mul_sum_ptr2[x] = img12_mul_sum_ptr1[x] + img1[x] * img2[x]; |
| } |
| |
| if (y > 6) |
| { |
| //calculate the sum of the last 8 lines by subtracting the total sum of 8 lines back from the present sum |
| temp = (y + 1) % 9 * width; |
| |
| img1_sum_ptr1 = img1_sum + temp; |
| img2_sum_ptr1 = img2_sum + temp; |
| img1_sq_sum_ptr1 = img1_sq_sum + temp; |
| img2_sq_sum_ptr1 = img2_sq_sum + temp; |
| img12_mul_sum_ptr1 = img12_mul_sum + temp; |
| |
| for (x = 0; x < width; x++) |
| { |
| img1_sum_ptr1[x] = img1_sum_ptr2[x] - img1_sum_ptr1[x]; |
| img2_sum_ptr1[x] = img2_sum_ptr2[x] - img2_sum_ptr1[x]; |
| img1_sq_sum_ptr1[x] = img1_sq_sum_ptr2[x] - img1_sq_sum_ptr1[x]; |
| img2_sq_sum_ptr1[x] = img2_sq_sum_ptr2[x] - img2_sq_sum_ptr1[x]; |
| img12_mul_sum_ptr1[x] = img12_mul_sum_ptr2[x] - img12_mul_sum_ptr1[x]; |
| } |
| |
| //here we calculate the sum over the 8x8 block of pixels |
| //this is done by sliding a window across the column sums for the last 8 lines |
| //each time adding the new column sum, and subtracting the one which fell out of the window |
| img1_block = 0; |
| img2_block = 0; |
| img1_sq_block = 0; |
| img2_sq_block = 0; |
| img12_mul_block = 0; |
| |
| //prologue, and calculation of simularity measure from the first 8 column sums |
| for (x = 0; x < 8; x++) |
| { |
| img1_block += img1_sum_ptr1[x]; |
| img2_block += img2_sum_ptr1[x]; |
| img1_sq_block += img1_sq_sum_ptr1[x]; |
| img2_sq_block += img2_sq_sum_ptr1[x]; |
| img12_mul_block += img12_mul_sum_ptr1[x]; |
| } |
| |
| if (lumimask) |
| { |
| y2 = y - 7; |
| x2 = 0; |
| |
| if (luminance) |
| { |
| mean = (img2_block + img1_block) / 128.0f; |
| |
| if (!(y2 % 2 || x2 % 2)) |
| *(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block; |
| } |
| else |
| { |
| mean = *(img12_sum_block + y2 * width_uv + x2); |
| mean += *(img12_sum_block + y2 * width_uv + x2 + 4); |
| mean += *(img12_sum_block + (y2 + 4) * width_uv + x2); |
| mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4); |
| |
| mean /= 512.0f; |
| } |
| |
| weight = mean < 40 ? 0.0f : |
| (mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f); |
| plane_summed_weights += weight; |
| |
| plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); |
| } |
| else |
| plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); |
| |
| //and for the rest |
| for (x = 8; x < width; x++) |
| { |
| img1_block = img1_block + img1_sum_ptr1[x] - img1_sum_ptr1[x - 8]; |
| img2_block = img2_block + img2_sum_ptr1[x] - img2_sum_ptr1[x - 8]; |
| img1_sq_block = img1_sq_block + img1_sq_sum_ptr1[x] - img1_sq_sum_ptr1[x - 8]; |
| img2_sq_block = img2_sq_block + img2_sq_sum_ptr1[x] - img2_sq_sum_ptr1[x - 8]; |
| img12_mul_block = img12_mul_block + img12_mul_sum_ptr1[x] - img12_mul_sum_ptr1[x - 8]; |
| |
| if (lumimask) |
| { |
| y2 = y - 7; |
| x2 = x - 7; |
| |
| if (luminance) |
| { |
| mean = (img2_block + img1_block) / 128.0f; |
| |
| if (!(y2 % 2 || x2 % 2)) |
| *(img12_sum_block + y2 / 2 * width_uv + x2 / 2) = img2_block + img1_block; |
| } |
| else |
| { |
| mean = *(img12_sum_block + y2 * width_uv + x2); |
| mean += *(img12_sum_block + y2 * width_uv + x2 + 4); |
| mean += *(img12_sum_block + (y2 + 4) * width_uv + x2); |
| mean += *(img12_sum_block + (y2 + 4) * width_uv + x2 + 4); |
| |
| mean /= 512.0f; |
| } |
| |
| weight = mean < 40 ? 0.0f : |
| (mean < 50 ? (mean - 40.0f) / 10.0f : 1.0f); |
| plane_summed_weights += weight; |
| |
| plane_quality += weight * vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); |
| } |
| else |
| plane_quality += vp8_similarity(img1_block, img2_block, img1_sq_block, img2_sq_block, img12_mul_block); |
| } |
| } |
| } |
| |
| if (plane_summed_weights == 0) |
| return 1.0f; |
| else |
| return plane_quality / plane_summed_weights; |
| } |
| |
| double vp8_calc_ssim |
| ( |
| YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, |
| int lumamask, |
| double *weight |
| ) |
| { |
| double a, b, c; |
| double frame_weight; |
| double ssimv; |
| |
| width_y = source->y_width; |
| height_y = source->y_height; |
| height_uv = source->uv_height; |
| width_uv = source->uv_width; |
| stride_uv = dest->uv_stride; |
| stride = dest->y_stride; |
| |
| lumimask = lumamask; |
| |
| luminance = 1; |
| a = vp8_ssim(source->y_buffer, dest->y_buffer, |
| source->y_stride, dest->y_stride, source->y_width, source->y_height); |
| luminance = 0; |
| |
| frame_weight = plane_summed_weights / ((width_y - 7) * (height_y - 7)); |
| |
| if (frame_weight == 0) |
| a = b = c = 1.0f; |
| else |
| { |
| b = vp8_ssim(source->u_buffer, dest->u_buffer, |
| source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height); |
| |
| c = vp8_ssim(source->v_buffer, dest->v_buffer, |
| source->uv_stride, dest->uv_stride, source->uv_width, source->uv_height); |
| } |
| |
| ssimv = a * .8 + .1 * (b + c); |
| |
| *weight = frame_weight; |
| |
| return ssimv; |
| } |
| |
| // Google version of SSIM |
| // SSIM |
| #define KERNEL 3 |
| #define KERNEL_SIZE (2 * KERNEL + 1) |
| |
| typedef unsigned char uint8; |
| typedef unsigned int uint32; |
| |
| static const int K[KERNEL_SIZE] = |
| { |
| 1, 4, 11, 16, 11, 4, 1 // 16 * exp(-0.3 * i * i) |
| }; |
| static const double ki_w = 1. / 2304.; // 1 / sum(i:0..6, j..6) K[i]*K[j] |
| double get_ssimg(const uint8 *org, const uint8 *rec, |
| int xo, int yo, int W, int H, |
| const int stride1, const int stride2 |
| ) |
| { |
| // TODO(skal): use summed tables |
| int y, x; |
| |
| const int ymin = (yo - KERNEL < 0) ? 0 : yo - KERNEL; |
| const int ymax = (yo + KERNEL > H - 1) ? H - 1 : yo + KERNEL; |
| const int xmin = (xo - KERNEL < 0) ? 0 : xo - KERNEL; |
| const int xmax = (xo + KERNEL > W - 1) ? W - 1 : xo + KERNEL; |
| // worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1) |
| // with a diff of 255, squares. That would a max error of 0x8ee0900, |
| // which fits into 32 bits integers. |
| uint32 w = 0, xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; |
| org += ymin * stride1; |
| rec += ymin * stride2; |
| |
| for (y = ymin; y <= ymax; ++y, org += stride1, rec += stride2) |
| { |
| const int Wy = K[KERNEL + y - yo]; |
| |
| for (x = xmin; x <= xmax; ++x) |
| { |
| const int Wxy = Wy * K[KERNEL + x - xo]; |
| // TODO(skal): inlined assembly |
| w += Wxy; |
| xm += Wxy * org[x]; |
| ym += Wxy * rec[x]; |
| xxm += Wxy * org[x] * org[x]; |
| xym += Wxy * org[x] * rec[x]; |
| yym += Wxy * rec[x] * rec[x]; |
| } |
| } |
| |
| { |
| const double iw = 1. / w; |
| const double iwx = xm * iw; |
| const double iwy = ym * iw; |
| double sxx = xxm * iw - iwx * iwx; |
| double syy = yym * iw - iwy * iwy; |
| |
| // small errors are possible, due to rounding. Clamp to zero. |
| if (sxx < 0.) sxx = 0.; |
| |
| if (syy < 0.) syy = 0.; |
| |
| { |
| const double sxsy = sqrt(sxx * syy); |
| const double sxy = xym * iw - iwx * iwy; |
| static const double C11 = (0.01 * 0.01) * (255 * 255); |
| static const double C22 = (0.03 * 0.03) * (255 * 255); |
| static const double C33 = (0.015 * 0.015) * (255 * 255); |
| const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); |
| const double c = (2. * sxsy + C22) / (sxx + syy + C22); |
| |
| const double s = (sxy + C33) / (sxsy + C33); |
| return l * c * s; |
| |
| } |
| } |
| |
| } |
| |
| double get_ssimfull_kernelg(const uint8 *org, const uint8 *rec, |
| int xo, int yo, int W, int H, |
| const int stride1, const int stride2) |
| { |
| // TODO(skal): use summed tables |
| // worst case of accumulation is a weight of 48 = 16 + 2 * (11 + 4 + 1) |
| // with a diff of 255, squares. That would a max error of 0x8ee0900, |
| // which fits into 32 bits integers. |
| int y_, x_; |
| uint32 xm = 0, ym = 0, xxm = 0, xym = 0, yym = 0; |
| org += (yo - KERNEL) * stride1; |
| org += (xo - KERNEL); |
| rec += (yo - KERNEL) * stride2; |
| rec += (xo - KERNEL); |
| |
| for (y_ = 0; y_ < KERNEL_SIZE; ++y_, org += stride1, rec += stride2) |
| { |
| const int Wy = K[y_]; |
| |
| for (x_ = 0; x_ < KERNEL_SIZE; ++x_) |
| { |
| const int Wxy = Wy * K[x_]; |
| // TODO(skal): inlined assembly |
| const int org_x = org[x_]; |
| const int rec_x = rec[x_]; |
| xm += Wxy * org_x; |
| ym += Wxy * rec_x; |
| xxm += Wxy * org_x * org_x; |
| xym += Wxy * org_x * rec_x; |
| yym += Wxy * rec_x * rec_x; |
| } |
| } |
| |
| { |
| const double iw = ki_w; |
| const double iwx = xm * iw; |
| const double iwy = ym * iw; |
| double sxx = xxm * iw - iwx * iwx; |
| double syy = yym * iw - iwy * iwy; |
| |
| // small errors are possible, due to rounding. Clamp to zero. |
| if (sxx < 0.) sxx = 0.; |
| |
| if (syy < 0.) syy = 0.; |
| |
| { |
| const double sxsy = sqrt(sxx * syy); |
| const double sxy = xym * iw - iwx * iwy; |
| static const double C11 = (0.01 * 0.01) * (255 * 255); |
| static const double C22 = (0.03 * 0.03) * (255 * 255); |
| static const double C33 = (0.015 * 0.015) * (255 * 255); |
| const double l = (2. * iwx * iwy + C11) / (iwx * iwx + iwy * iwy + C11); |
| const double c = (2. * sxsy + C22) / (sxx + syy + C22); |
| const double s = (sxy + C33) / (sxsy + C33); |
| return l * c * s; |
| } |
| } |
| } |
| |
| double calc_ssimg(const uint8 *org, const uint8 *rec, |
| const int image_width, const int image_height, |
| const int stride1, const int stride2 |
| ) |
| { |
| int j, i; |
| double SSIM = 0.; |
| |
| for (j = 0; j < KERNEL; ++j) |
| { |
| for (i = 0; i < image_width; ++i) |
| { |
| SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); |
| } |
| } |
| |
| for (j = KERNEL; j < image_height - KERNEL; ++j) |
| { |
| for (i = 0; i < KERNEL; ++i) |
| { |
| SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); |
| } |
| |
| for (i = KERNEL; i < image_width - KERNEL; ++i) |
| { |
| SSIM += get_ssimfull_kernelg(org, rec, i, j, |
| image_width, image_height, stride1, stride2); |
| } |
| |
| for (i = image_width - KERNEL; i < image_width; ++i) |
| { |
| SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); |
| } |
| } |
| |
| for (j = image_height - KERNEL; j < image_height; ++j) |
| { |
| for (i = 0; i < image_width; ++i) |
| { |
| SSIM += get_ssimg(org, rec, i, j, image_width, image_height, stride1, stride2); |
| } |
| } |
| |
| return SSIM; |
| } |
| |
| |
| double vp8_calc_ssimg |
| ( |
| YV12_BUFFER_CONFIG *source, |
| YV12_BUFFER_CONFIG *dest, |
| double *ssim_y, |
| double *ssim_u, |
| double *ssim_v |
| ) |
| { |
| double ssim_all = 0; |
| int ysize = source->y_width * source->y_height; |
| int uvsize = ysize / 4; |
| |
| *ssim_y = calc_ssimg(source->y_buffer, dest->y_buffer, |
| source->y_width, source->y_height, |
| source->y_stride, dest->y_stride); |
| |
| |
| *ssim_u = calc_ssimg(source->u_buffer, dest->u_buffer, |
| source->uv_width, source->uv_height, |
| source->uv_stride, dest->uv_stride); |
| |
| |
| *ssim_v = calc_ssimg(source->v_buffer, dest->v_buffer, |
| source->uv_width, source->uv_height, |
| source->uv_stride, dest->uv_stride); |
| |
| ssim_all = (*ssim_y + *ssim_u + *ssim_v) / (ysize + uvsize + uvsize); |
| *ssim_y /= ysize; |
| *ssim_u /= uvsize; |
| *ssim_v /= uvsize; |
| return ssim_all; |
| } |