blob: 6035f3e6a05d30f3331a0c268bf237637bef9a42 [file] [log] [blame]
/*
* Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license and patent
* grant that can be found in the LICENSE file in the root of the source
* tree. All contributing project authors may be found in the AUTHORS
* file in the root of the source tree.
*/
#include "treereader.h"
#include "entropymv.h"
#include "entropymode.h"
#include "onyxd_int.h"
#include "findnearmv.h"
#include "demode.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc)
{
const vp8_prob *const p = (const vp8_prob *) mvc;
int x = 0;
if (vp8_read(r, p [mvpis_short])) /* Large */
{
int i = 0;
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (++i < 3);
i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */
do
{
x += vp8_read(r, p [MVPbits + i]) << i;
}
while (--i > 3);
if (!(x & 0xFFF0) || vp8_read(r, p [MVPbits + 3]))
x += 8;
}
else /* small */
x = vp8_treed_read(r, vp8_small_mvtree, p + MVPshort);
if (x && vp8_read(r, p [MVPsign]))
x = -x;
return x;
}
static void read_mv(vp8_reader *r, MV *mv, const MV_CONTEXT *mvc)
{
mv->row = (short)(read_mvcomponent(r, mvc) << 1);
mv->col = (short)(read_mvcomponent(r, ++mvc) << 1);
}
static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc)
{
int i = 0;
do
{
const vp8_prob *up = vp8_mv_update_probs[i].prob;
vp8_prob *p = (vp8_prob *)(mvc + i);
vp8_prob *const pstop = p + MVPcount;
do
{
if (vp8_read(bc, *up++))
{
const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7);
*p = x ? x << 1 : 1;
}
}
while (++p < pstop);
}
while (++i < 2);
}
static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_mv_ref_tree, p);
return (MB_PREDICTION_MODE)i;
}
static MB_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p)
{
const int i = vp8_treed_read(bc, vp8_sub_mv_ref_tree, p);
return (MB_PREDICTION_MODE)i;
}
unsigned int vp8_mv_cont_count[5][4] =
{
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
void vp8_decode_mode_mvs(VP8D_COMP *pbi)
{
const MV Zero = { 0, 0};
VP8_COMMON *const pc = & pbi->common;
vp8_reader *const bc = & pbi->bc;
MODE_INFO *mi = pc->mi, *ms;
const int mis = pc->mode_info_stride;
MV_CONTEXT *const mvc = pc->fc.mvc;
int mb_row = -1;
vp8_prob prob_intra;
vp8_prob prob_last;
vp8_prob prob_gf;
vp8_prob prob_skip_false = 0;
if (pc->mb_no_coeff_skip)
prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8);
prob_intra = (vp8_prob)vp8_read_literal(bc, 8);
prob_last = (vp8_prob)vp8_read_literal(bc, 8);
prob_gf = (vp8_prob)vp8_read_literal(bc, 8);
ms = pc->mi - 1;
if (vp8_read_bit(bc))
{
int i = 0;
do
{
pc->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < 4);
}
if (vp8_read_bit(bc))
{
int i = 0;
do
{
pc->fc.uv_mode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8);
}
while (++i < 3);
}
read_mvcontexts(bc, mvc);
while (++mb_row < pc->mb_rows)
{
int mb_col = -1;
while (++mb_col < pc->mb_cols)
{
MB_MODE_INFO *const mbmi = & mi->mbmi;
MV *const mv = & mbmi->mv.as_mv;
VP8_COMMON *const pc = &pbi->common;
MACROBLOCKD *xd = &pbi->mb;
vp8dx_bool_decoder_fill(bc);
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
// If required read in new segmentation data for this MB
if (pbi->mb.update_mb_segmentation_map)
vp8_read_mb_features(bc, mbmi, &pbi->mb);
// Read the macroblock coeff skip flag if this feature is in use, else default to 0
if (pc->mb_no_coeff_skip)
mbmi->mb_skip_coeff = vp8_read(bc, prob_skip_false);
else
mbmi->mb_skip_coeff = 0;
mbmi->uv_mode = DC_PRED;
if ((mbmi->ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, prob_intra))) /* inter MB */
{
int rct[4];
vp8_prob mv_ref_p [VP8_MVREFS-1];
MV nearest, nearby, best_mv;
if (vp8_read(bc, prob_last))
{
mbmi->ref_frame = (MV_REFERENCE_FRAME)((int)mbmi->ref_frame + (int)(1 + vp8_read(bc, prob_gf)));
}
vp8_find_near_mvs(xd, mi, &nearest, &nearby, &best_mv, rct, mbmi->ref_frame, pbi->common.ref_frame_sign_bias);
vp8_mv_ref_probs(mv_ref_p, rct);
switch (mbmi->mode = read_mv_ref(bc, mv_ref_p))
{
case SPLITMV:
{
const int s = mbmi->partitioning = vp8_treed_read(
bc, vp8_mbsplit_tree, vp8_mbsplit_probs
);
const int num_p = vp8_mbsplit_count [s];
const int *const L = vp8_mbsplits [s];
int j = 0;
do /* for each subset j */
{
B_MODE_INFO *const bmi = mbmi->partition_bmi + j;
MV *const mv = & bmi->mv.as_mv;
int k = -1; /* first block in subset j */
int mv_contz;
while (j != L[++k])
if (k >= 16)
#if CONFIG_DEBUG
assert(0);
#else
;
#endif
mv_contz = vp8_mv_cont(&(vp8_left_bmi(mi, k)->mv.as_mv), &(vp8_above_bmi(mi, k, mis)->mv.as_mv));
switch (bmi->mode = (B_PREDICTION_MODE) sub_mv_ref(bc, vp8_sub_mv_ref_prob2 [mv_contz])) //pc->fc.sub_mv_ref_prob))
{
case NEW4X4:
read_mv(bc, mv, (const MV_CONTEXT *) mvc);
mv->row += best_mv.row;
mv->col += best_mv.col;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][3]++;
#endif
break;
case LEFT4X4:
*mv = vp8_left_bmi(mi, k)->mv.as_mv;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][0]++;
#endif
break;
case ABOVE4X4:
*mv = vp8_above_bmi(mi, k, mis)->mv.as_mv;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZERO4X4:
*mv = Zero;
#ifdef VPX_MODE_COUNT
vp8_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
/* Fill (uniform) modes, mvs of jth subset.
Must do it here because ensuing subsets can
refer back to us via "left" or "above". */
do
if (j == L[k])
mi->bmi[k] = *bmi;
while (++k < 16);
}
while (++j < num_p);
}
*mv = mi->bmi[15].mv.as_mv;
break; /* done with SPLITMV */
case NEARMV:
*mv = nearby;
// Clip "next_nearest" so that it does not extend to far out of image
if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
goto propagate_mv;
case NEARESTMV:
*mv = nearest;
// Clip "next_nearest" so that it does not extend to far out of image
if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
goto propagate_mv;
case ZEROMV:
*mv = Zero;
goto propagate_mv;
case NEWMV:
read_mv(bc, mv, (const MV_CONTEXT *) mvc);
mv->row += best_mv.row;
mv->col += best_mv.col;
/* Encoder should not produce invalid motion vectors, but since
* arbitrary length MVs can be parsed from the bitstream, we
* need to clamp them here in case we're reading bad data to
* avoid a crash.
*/
#if CONFIG_DEBUG
assert(mv->col >= (xd->mb_to_left_edge - LEFT_TOP_MARGIN));
assert(mv->col <= (xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN));
assert(mv->row >= (xd->mb_to_top_edge - LEFT_TOP_MARGIN));
assert(mv->row <= (xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN));
#endif
if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
propagate_mv: /* same MV throughout */
{
//int i=0;
//do
//{
// mi->bmi[i].mv.as_mv = *mv;
//}
//while( ++i < 16);
mi->bmi[0].mv.as_mv = *mv;
mi->bmi[1].mv.as_mv = *mv;
mi->bmi[2].mv.as_mv = *mv;
mi->bmi[3].mv.as_mv = *mv;
mi->bmi[4].mv.as_mv = *mv;
mi->bmi[5].mv.as_mv = *mv;
mi->bmi[6].mv.as_mv = *mv;
mi->bmi[7].mv.as_mv = *mv;
mi->bmi[8].mv.as_mv = *mv;
mi->bmi[9].mv.as_mv = *mv;
mi->bmi[10].mv.as_mv = *mv;
mi->bmi[11].mv.as_mv = *mv;
mi->bmi[12].mv.as_mv = *mv;
mi->bmi[13].mv.as_mv = *mv;
mi->bmi[14].mv.as_mv = *mv;
mi->bmi[15].mv.as_mv = *mv;
}
break;
default:;
#if CONFIG_DEBUG
assert(0);
#endif
}
}
else
{
/* MB is intra coded */
int j = 0;
do
{
mi->bmi[j].mv.as_mv = Zero;
}
while (++j < 16);
*mv = Zero;
if ((mbmi->mode = (MB_PREDICTION_MODE) vp8_read_ymode(bc, pc->fc.ymode_prob)) == B_PRED)
{
int j = 0;
do
{
mi->bmi[j].mode = (B_PREDICTION_MODE)vp8_read_bmode(bc, pc->fc.bmode_prob);
}
while (++j < 16);
}
mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc, pc->fc.uv_mode_prob);
}
mi++; // next macroblock
}
mi++; // skip left predictor each row
}
}