| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <float.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpxscale_arbitrary.h" |
| |
| #define FIXED_POINT |
| |
| #define MAX_IN_WIDTH 800 |
| #define MAX_IN_HEIGHT 600 |
| #define MAX_OUT_WIDTH 800 |
| #define MAX_OUT_HEIGHT 600 |
| #define MAX_OUT_DIMENSION ((MAX_OUT_WIDTH > MAX_OUT_HEIGHT) ? \ |
| MAX_OUT_WIDTH : MAX_OUT_HEIGHT) |
| |
| BICUBIC_SCALER_STRUCT g_b_scaler; |
| static int g_first_time = 1; |
| |
| #pragma DATA_SECTION(g_hbuf, "VP6_HEAP") |
| #pragma DATA_ALIGN (g_hbuf, 32); |
| unsigned char g_hbuf[MAX_OUT_DIMENSION]; |
| |
| #pragma DATA_SECTION(g_hbuf_uv, "VP6_HEAP") |
| #pragma DATA_ALIGN (g_hbuf_uv, 32); |
| unsigned char g_hbuf_uv[MAX_OUT_DIMENSION]; |
| |
| |
| #ifdef FIXED_POINT |
| static int a_i = 0.6 * 65536; |
| #else |
| static float a = -0.6; |
| #endif |
| |
| #ifdef FIXED_POINT |
| // 3 2 |
| // C0 = a*t - a*t |
| // |
| static short c0_fixed(unsigned int t) |
| { |
| // put t in Q16 notation |
| unsigned short v1, v2; |
| |
| // Q16 |
| v1 = (a_i * t) >> 16; |
| v1 = (v1 * t) >> 16; |
| |
| // Q16 |
| v2 = (a_i * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| |
| // Q12 |
| return -((v1 - v2) >> 4); |
| } |
| |
| // 2 3 |
| // C1 = a*t + (3-2*a)*t - (2-a)*t |
| // |
| static short c1_fixed(unsigned int t) |
| { |
| unsigned short v1, v2, v3; |
| unsigned short two, three; |
| |
| // Q16 |
| v1 = (a_i * t) >> 16; |
| |
| // Q13 |
| two = 2 << 13; |
| v2 = two - (a_i >> 3); |
| v2 = (v2 * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| |
| // Q13 |
| three = 3 << 13; |
| v3 = three - (2 * (a_i >> 3)); |
| v3 = (v3 * t) >> 16; |
| v3 = (v3 * t) >> 16; |
| |
| // Q12 |
| return (((v1 >> 3) - v2 + v3) >> 1); |
| |
| } |
| |
| // 2 3 |
| // C2 = 1 - (3-a)*t + (2-a)*t |
| // |
| static short c2_fixed(unsigned int t) |
| { |
| unsigned short v1, v2, v3; |
| unsigned short two, three; |
| |
| // Q13 |
| v1 = 1 << 13; |
| |
| // Q13 |
| three = 3 << 13; |
| v2 = three - (a_i >> 3); |
| v2 = (v2 * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| |
| // Q13 |
| two = 2 << 13; |
| v3 = two - (a_i >> 3); |
| v3 = (v3 * t) >> 16; |
| v3 = (v3 * t) >> 16; |
| v3 = (v3 * t) >> 16; |
| |
| // Q12 |
| return (v1 - v2 + v3) >> 1; |
| } |
| |
| // 2 3 |
| // C3 = a*t - 2*a*t + a*t |
| // |
| static short c3_fixed(unsigned int t) |
| { |
| int v1, v2, v3; |
| |
| // Q16 |
| v1 = (a_i * t) >> 16; |
| |
| // Q15 |
| v2 = 2 * (a_i >> 1); |
| v2 = (v2 * t) >> 16; |
| v2 = (v2 * t) >> 16; |
| |
| // Q16 |
| v3 = (a_i * t) >> 16; |
| v3 = (v3 * t) >> 16; |
| v3 = (v3 * t) >> 16; |
| |
| // Q12 |
| return ((v2 - (v1 >> 1) - (v3 >> 1)) >> 3); |
| } |
| #else |
| // 3 2 |
| // C0 = -a*t + a*t |
| // |
| float C0(float t) |
| { |
| return -a * t * t * t + a * t * t; |
| } |
| |
| // 2 3 |
| // C1 = -a*t + (2*a+3)*t - (a+2)*t |
| // |
| float C1(float t) |
| { |
| return -(a + 2.0f) * t * t * t + (2.0f * a + 3.0f) * t * t - a * t; |
| } |
| |
| // 2 3 |
| // C2 = 1 - (a+3)*t + (a+2)*t |
| // |
| float C2(float t) |
| { |
| return (a + 2.0f) * t * t * t - (a + 3.0f) * t * t + 1.0f; |
| } |
| |
| // 2 3 |
| // C3 = a*t - 2*a*t + a*t |
| // |
| float C3(float t) |
| { |
| return a * t * t * t - 2.0f * a * t * t + a * t; |
| } |
| #endif |
| |
| #if 0 |
| int compare_real_fixed() |
| { |
| int i, errors = 0; |
| float mult = 1.0 / 10000.0; |
| unsigned int fixed_mult = mult * 4294967296;//65536; |
| unsigned int phase_offset_int; |
| float phase_offset_real; |
| |
| for (i = 0; i < 10000; i++) |
| { |
| int fixed0, fixed1, fixed2, fixed3, fixed_total; |
| int real0, real1, real2, real3, real_total; |
| |
| phase_offset_real = (float)i * mult; |
| phase_offset_int = (fixed_mult * i) >> 16; |
| // phase_offset_int = phase_offset_real * 65536; |
| |
| fixed0 = c0_fixed(phase_offset_int); |
| real0 = C0(phase_offset_real) * 4096.0; |
| |
| if ((abs(fixed0) > (abs(real0) + 1)) || (abs(fixed0) < (abs(real0) - 1))) |
| errors++; |
| |
| fixed1 = c1_fixed(phase_offset_int); |
| real1 = C1(phase_offset_real) * 4096.0; |
| |
| if ((abs(fixed1) > (abs(real1) + 1)) || (abs(fixed1) < (abs(real1) - 1))) |
| errors++; |
| |
| fixed2 = c2_fixed(phase_offset_int); |
| real2 = C2(phase_offset_real) * 4096.0; |
| |
| if ((abs(fixed2) > (abs(real2) + 1)) || (abs(fixed2) < (abs(real2) - 1))) |
| errors++; |
| |
| fixed3 = c3_fixed(phase_offset_int); |
| real3 = C3(phase_offset_real) * 4096.0; |
| |
| if ((abs(fixed3) > (abs(real3) + 1)) || (abs(fixed3) < (abs(real3) - 1))) |
| errors++; |
| |
| fixed_total = fixed0 + fixed1 + fixed2 + fixed3; |
| real_total = real0 + real1 + real2 + real3; |
| |
| if ((fixed_total > 4097) || (fixed_total < 4094)) |
| errors ++; |
| |
| if ((real_total > 4097) || (real_total < 4095)) |
| errors ++; |
| } |
| |
| return errors; |
| } |
| #endif |
| |
| // Find greatest common denominator between two integers. Method used here is |
| // slow compared to Euclid's algorithm, but does not require any division. |
| int gcd(int a, int b) |
| { |
| // Problem with this algorithm is that if a or b = 0 this function |
| // will never exit. Don't want to return 0 because any computation |
| // that was based on a common denoninator and tried to reduce by |
| // dividing by 0 would fail. Best solution that could be thought of |
| // would to be fail by returing a 1; |
| if (a <= 0 || b <= 0) |
| return 1; |
| |
| while (a != b) |
| { |
| if (b > a) |
| b = b - a; |
| else |
| { |
| int tmp = a;//swap large and |
| a = b; //small |
| b = tmp; |
| } |
| } |
| |
| return b; |
| } |
| |
| void bicubic_coefficient_init() |
| { |
| vpx_memset(&g_b_scaler, 0, sizeof(BICUBIC_SCALER_STRUCT)); |
| g_first_time = 0; |
| } |
| |
| void bicubic_coefficient_destroy() |
| { |
| if (!g_first_time) |
| { |
| if (g_b_scaler.l_w) vpx_free(g_b_scaler.l_w); |
| |
| if (g_b_scaler.l_h) vpx_free(g_b_scaler.l_h); |
| |
| if (g_b_scaler.l_h_uv) vpx_free(g_b_scaler.l_h_uv); |
| |
| if (g_b_scaler.c_w) vpx_free(g_b_scaler.c_w); |
| |
| if (g_b_scaler.c_h) vpx_free(g_b_scaler.c_h); |
| |
| if (g_b_scaler.c_h_uv) vpx_free(g_b_scaler.c_h_uv); |
| |
| vpx_memset(&g_b_scaler, 0, sizeof(BICUBIC_SCALER_STRUCT)); |
| } |
| } |
| |
| // Create the coeffients that will be used for the cubic interpolation. |
| // Because scaling does not have to be equal in the vertical and horizontal |
| // regimes the phase offsets will be different. There are 4 coefficents |
| // for each point, two on each side. The layout is that there are the |
| // 4 coefficents for each phase in the array and then the next phase. |
| int bicubic_coefficient_setup(int in_width, int in_height, int out_width, int out_height) |
| { |
| int i; |
| #ifdef FIXED_POINT |
| int phase_offset_int; |
| unsigned int fixed_mult; |
| int product_val = 0; |
| #else |
| float phase_offset; |
| #endif |
| int gcd_w, gcd_h, gcd_h_uv, d_w, d_h, d_h_uv; |
| |
| if (g_first_time) |
| bicubic_coefficient_init(); |
| |
| |
| // check to see if the coefficents have already been set up correctly |
| if ((in_width == g_b_scaler.in_width) && (in_height == g_b_scaler.in_height) |
| && (out_width == g_b_scaler.out_width) && (out_height == g_b_scaler.out_height)) |
| return 0; |
| |
| g_b_scaler.in_width = in_width; |
| g_b_scaler.in_height = in_height; |
| g_b_scaler.out_width = out_width; |
| g_b_scaler.out_height = out_height; |
| |
| // Don't want to allow crazy scaling, just try and prevent a catastrophic |
| // failure here. Want to fail after setting the member functions so if |
| // if the scaler is called the member functions will not scale. |
| if (out_width <= 0 || out_height <= 0) |
| return -1; |
| |
| // reduce in/out width and height ratios using the gcd |
| gcd_w = gcd(out_width, in_width); |
| gcd_h = gcd(out_height, in_height); |
| gcd_h_uv = gcd(out_height, in_height / 2); |
| |
| // the numerator width and height are to be saved in |
| // globals so they can be used during the scaling process |
| // without having to be recalculated. |
| g_b_scaler.nw = out_width / gcd_w; |
| d_w = in_width / gcd_w; |
| |
| g_b_scaler.nh = out_height / gcd_h; |
| d_h = in_height / gcd_h; |
| |
| g_b_scaler.nh_uv = out_height / gcd_h_uv; |
| d_h_uv = (in_height / 2) / gcd_h_uv; |
| |
| // allocate memory for the coefficents |
| if (g_b_scaler.l_w) vpx_free(g_b_scaler.l_w); |
| |
| if (g_b_scaler.l_h) vpx_free(g_b_scaler.l_h); |
| |
| if (g_b_scaler.l_h_uv) vpx_free(g_b_scaler.l_h_uv); |
| |
| g_b_scaler.l_w = (short *)vpx_memalign(32, out_width * 2); |
| g_b_scaler.l_h = (short *)vpx_memalign(32, out_height * 2); |
| g_b_scaler.l_h_uv = (short *)vpx_memalign(32, out_height * 2); |
| |
| if (g_b_scaler.c_w) vpx_free(g_b_scaler.c_w); |
| |
| if (g_b_scaler.c_h) vpx_free(g_b_scaler.c_h); |
| |
| if (g_b_scaler.c_h_uv) vpx_free(g_b_scaler.c_h_uv); |
| |
| g_b_scaler.c_w = (short *)vpx_memalign(32, g_b_scaler.nw * 4 * 2); |
| g_b_scaler.c_h = (short *)vpx_memalign(32, g_b_scaler.nh * 4 * 2); |
| g_b_scaler.c_h_uv = (short *)vpx_memalign(32, g_b_scaler.nh_uv * 4 * 2); |
| |
| g_b_scaler.hbuf = g_hbuf; |
| g_b_scaler.hbuf_uv = g_hbuf_uv; |
| |
| // Set up polyphase filter taps. This needs to be done before |
| // the scaling because of the floating point math required. The |
| // coefficients are multiplied by 2^12 so that fixed point math |
| // can be used in the main scaling loop. |
| #ifdef FIXED_POINT |
| fixed_mult = (1.0 / (float)g_b_scaler.nw) * 4294967296; |
| |
| product_val = 0; |
| |
| for (i = 0; i < g_b_scaler.nw; i++) |
| { |
| if (product_val > g_b_scaler.nw) |
| product_val -= g_b_scaler.nw; |
| |
| phase_offset_int = (fixed_mult * product_val) >> 16; |
| |
| g_b_scaler.c_w[i*4] = c3_fixed(phase_offset_int); |
| g_b_scaler.c_w[i*4+1] = c2_fixed(phase_offset_int); |
| g_b_scaler.c_w[i*4+2] = c1_fixed(phase_offset_int); |
| g_b_scaler.c_w[i*4+3] = c0_fixed(phase_offset_int); |
| |
| product_val += d_w; |
| } |
| |
| |
| fixed_mult = (1.0 / (float)g_b_scaler.nh) * 4294967296; |
| |
| product_val = 0; |
| |
| for (i = 0; i < g_b_scaler.nh; i++) |
| { |
| if (product_val > g_b_scaler.nh) |
| product_val -= g_b_scaler.nh; |
| |
| phase_offset_int = (fixed_mult * product_val) >> 16; |
| |
| g_b_scaler.c_h[i*4] = c0_fixed(phase_offset_int); |
| g_b_scaler.c_h[i*4+1] = c1_fixed(phase_offset_int); |
| g_b_scaler.c_h[i*4+2] = c2_fixed(phase_offset_int); |
| g_b_scaler.c_h[i*4+3] = c3_fixed(phase_offset_int); |
| |
| product_val += d_h; |
| } |
| |
| fixed_mult = (1.0 / (float)g_b_scaler.nh_uv) * 4294967296; |
| |
| product_val = 0; |
| |
| for (i = 0; i < g_b_scaler.nh_uv; i++) |
| { |
| if (product_val > g_b_scaler.nh_uv) |
| product_val -= g_b_scaler.nh_uv; |
| |
| phase_offset_int = (fixed_mult * product_val) >> 16; |
| |
| g_b_scaler.c_h_uv[i*4] = c0_fixed(phase_offset_int); |
| g_b_scaler.c_h_uv[i*4+1] = c1_fixed(phase_offset_int); |
| g_b_scaler.c_h_uv[i*4+2] = c2_fixed(phase_offset_int); |
| g_b_scaler.c_h_uv[i*4+3] = c3_fixed(phase_offset_int); |
| |
| product_val += d_h_uv; |
| } |
| |
| #else |
| |
| for (i = 0; i < g_nw; i++) |
| { |
| phase_offset = (float)((i * d_w) % g_nw) / (float)g_nw; |
| g_c_w[i*4] = (C3(phase_offset) * 4096.0); |
| g_c_w[i*4+1] = (C2(phase_offset) * 4096.0); |
| g_c_w[i*4+2] = (C1(phase_offset) * 4096.0); |
| g_c_w[i*4+3] = (C0(phase_offset) * 4096.0); |
| } |
| |
| for (i = 0; i < g_nh; i++) |
| { |
| phase_offset = (float)((i * d_h) % g_nh) / (float)g_nh; |
| g_c_h[i*4] = (C0(phase_offset) * 4096.0); |
| g_c_h[i*4+1] = (C1(phase_offset) * 4096.0); |
| g_c_h[i*4+2] = (C2(phase_offset) * 4096.0); |
| g_c_h[i*4+3] = (C3(phase_offset) * 4096.0); |
| } |
| |
| for (i = 0; i < g_nh_uv; i++) |
| { |
| phase_offset = (float)((i * d_h_uv) % g_nh_uv) / (float)g_nh_uv; |
| g_c_h_uv[i*4] = (C0(phase_offset) * 4096.0); |
| g_c_h_uv[i*4+1] = (C1(phase_offset) * 4096.0); |
| g_c_h_uv[i*4+2] = (C2(phase_offset) * 4096.0); |
| g_c_h_uv[i*4+3] = (C3(phase_offset) * 4096.0); |
| } |
| |
| #endif |
| |
| // Create an array that corresponds input lines to output lines. |
| // This doesn't require floating point math, but it does require |
| // a division and because hardware division is not present that |
| // is a call. |
| for (i = 0; i < out_width; i++) |
| { |
| g_b_scaler.l_w[i] = (i * d_w) / g_b_scaler.nw; |
| |
| if ((g_b_scaler.l_w[i] + 2) <= in_width) |
| g_b_scaler.max_usable_out_width = i; |
| |
| } |
| |
| for (i = 0; i < out_height + 1; i++) |
| { |
| g_b_scaler.l_h[i] = (i * d_h) / g_b_scaler.nh; |
| g_b_scaler.l_h_uv[i] = (i * d_h_uv) / g_b_scaler.nh_uv; |
| } |
| |
| return 0; |
| } |
| |
| int bicubic_scale(int in_width, int in_height, int in_stride, |
| int out_width, int out_height, int out_stride, |
| unsigned char *input_image, unsigned char *output_image) |
| { |
| short *RESTRICT l_w, * RESTRICT l_h; |
| short *RESTRICT c_w, * RESTRICT c_h; |
| unsigned char *RESTRICT ip, * RESTRICT op; |
| unsigned char *RESTRICT hbuf; |
| int h, w, lw, lh; |
| int temp_sum; |
| int phase_offset_w, phase_offset_h; |
| |
| c_w = g_b_scaler.c_w; |
| c_h = g_b_scaler.c_h; |
| |
| op = output_image; |
| |
| l_w = g_b_scaler.l_w; |
| l_h = g_b_scaler.l_h; |
| |
| phase_offset_h = 0; |
| |
| for (h = 0; h < out_height; h++) |
| { |
| // select the row to work on |
| lh = l_h[h]; |
| ip = input_image + (in_stride * lh); |
| |
| // vp8_filter the row vertically into an temporary buffer. |
| // If the phase offset == 0 then all the multiplication |
| // is going to result in the output equalling the input. |
| // So instead point the temporary buffer to the input. |
| // Also handle the boundry condition of not being able to |
| // filter that last lines. |
| if (phase_offset_h && (lh < in_height - 2)) |
| { |
| hbuf = g_b_scaler.hbuf; |
| |
| for (w = 0; w < in_width; w++) |
| { |
| temp_sum = c_h[phase_offset_h*4+3] * ip[w - in_stride]; |
| temp_sum += c_h[phase_offset_h*4+2] * ip[w]; |
| temp_sum += c_h[phase_offset_h*4+1] * ip[w + in_stride]; |
| temp_sum += c_h[phase_offset_h*4] * ip[w + 2*in_stride]; |
| |
| hbuf[w] = temp_sum >> 12; |
| } |
| } |
| else |
| hbuf = ip; |
| |
| // increase the phase offset for the next time around. |
| if (++phase_offset_h >= g_b_scaler.nh) |
| phase_offset_h = 0; |
| |
| // now filter and expand it horizontally into the final |
| // output buffer |
| phase_offset_w = 0; |
| |
| for (w = 0; w < out_width; w++) |
| { |
| // get the index to use to expand the image |
| lw = l_w[w]; |
| |
| temp_sum = c_w[phase_offset_w*4] * hbuf[lw - 1]; |
| temp_sum += c_w[phase_offset_w*4+1] * hbuf[lw]; |
| temp_sum += c_w[phase_offset_w*4+2] * hbuf[lw + 1]; |
| temp_sum += c_w[phase_offset_w*4+3] * hbuf[lw + 2]; |
| temp_sum = temp_sum >> 12; |
| |
| if (++phase_offset_w >= g_b_scaler.nw) |
| phase_offset_w = 0; |
| |
| // boundry conditions |
| if ((lw + 2) >= in_width) |
| temp_sum = hbuf[lw]; |
| |
| if (lw == 0) |
| temp_sum = hbuf[0]; |
| |
| op[w] = temp_sum; |
| } |
| |
| op += out_stride; |
| } |
| |
| return 0; |
| } |
| |
| void bicubic_scale_frame_reset() |
| { |
| g_b_scaler.out_width = 0; |
| g_b_scaler.out_height = 0; |
| } |
| |
| void bicubic_scale_frame(YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, |
| int new_width, int new_height) |
| { |
| |
| dst->y_width = new_width; |
| dst->y_height = new_height; |
| dst->uv_width = new_width / 2; |
| dst->uv_height = new_height / 2; |
| |
| dst->y_stride = dst->y_width; |
| dst->uv_stride = dst->uv_width; |
| |
| bicubic_scale(src->y_width, src->y_height, src->y_stride, |
| new_width, new_height, dst->y_stride, |
| src->y_buffer, dst->y_buffer); |
| |
| bicubic_scale(src->uv_width, src->uv_height, src->uv_stride, |
| new_width / 2, new_height / 2, dst->uv_stride, |
| src->u_buffer, dst->u_buffer); |
| |
| bicubic_scale(src->uv_width, src->uv_height, src->uv_stride, |
| new_width / 2, new_height / 2, dst->uv_stride, |
| src->v_buffer, dst->v_buffer); |
| } |