| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include "math.h" |
| #include "limits.h" |
| #include "block.h" |
| #include "onyx_int.h" |
| #include "variance.h" |
| #include "encodeintra.h" |
| #include "setupintrarecon.h" |
| #include "mcomp.h" |
| #include "vpx_scale/vpxscale.h" |
| #include "encodemb.h" |
| #include "extend.h" |
| #include "systemdependent.h" |
| #include "vpx_scale/yv12extend.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "swapyv12buffer.h" |
| #include <stdio.h> |
| #include "rdopt.h" |
| #include "quant_common.h" |
| #include "encodemv.h" |
| |
| //#define OUTPUT_FPF 1 |
| //#define FIRSTPASS_MM 1 |
| |
| #if CONFIG_RUNTIME_CPU_DETECT |
| #define IF_RTCD(x) (x) |
| #else |
| #define IF_RTCD(x) NULL |
| #endif |
| |
| extern void vp8_build_block_offsets(MACROBLOCK *x); |
| extern void vp8_setup_block_ptrs(MACROBLOCK *x); |
| extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); |
| extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv); |
| extern void vp8_alloc_compressor_data(VP8_COMP *cpi); |
| |
| //#define GFQ_ADJUSTMENT (40 + ((15*Q)/10)) |
| //#define GFQ_ADJUSTMENT (80 + ((15*Q)/10)) |
| #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] |
| extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; |
| |
| extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; |
| |
| #define IIFACTOR 1.4 |
| #define IIKFACTOR1 1.40 |
| #define IIKFACTOR2 1.5 |
| #define RMAX 14.0 |
| #define GF_RMAX 48.0 // 128.0 |
| |
| #define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) |
| |
| #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| |
| static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; |
| static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; |
| |
| |
| void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); |
| int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps); |
| |
| int vp8_encode_intra(VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred) |
| { |
| |
| int i; |
| int intra_pred_var = 0; |
| (void) cpi; |
| |
| if (use_dc_pred) |
| { |
| x->e_mbd.mode_info_context->mbmi.mode = DC_PRED; |
| x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED; |
| x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; |
| |
| vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); |
| } |
| else |
| { |
| for (i = 0; i < 16; i++) |
| { |
| BLOCKD *b = &x->e_mbd.block[i]; |
| BLOCK *be = &x->block[i]; |
| |
| vp8_encode_intra4x4block(IF_RTCD(&cpi->rtcd), x, be, b, B_DC_PRED); |
| } |
| } |
| |
| intra_pred_var = VARIANCE_INVOKE(&cpi->rtcd.variance, getmbss)(x->src_diff); |
| |
| return intra_pred_var; |
| } |
| |
| // Resets the first pass file to the given position using a relative seek from the current position |
| static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) |
| { |
| cpi->stats_in = Position; |
| } |
| |
| static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) |
| { |
| /*FIRSTPASS_STATS * start_pos; |
| int ret_val; |
| |
| start_pos = cpi->stats_in; |
| ret_val = vp8_input_stats(cpi, next_frame); |
| reset_fpf_position(cpi, start_pos); |
| |
| return ret_val;*/ |
| |
| if (cpi->stats_in >= cpi->stats_in_end) |
| return EOF; |
| |
| *next_frame = *cpi->stats_in; |
| return 1; |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and harder frames |
| static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| double av_err = cpi->total_stats.ssim_weighted_pred_err; |
| double this_err = this_frame->ssim_weighted_pred_err; |
| double modified_err; |
| |
| //double relative_next_iiratio; |
| //double next_iiratio; |
| //double sum_iiratio; |
| //int i; |
| |
| //FIRSTPASS_STATS next_frame; |
| //FIRSTPASS_STATS *start_pos; |
| |
| /*start_pos = cpi->stats_in; |
| sum_iiratio = 0.0; |
| i = 0; |
| while ( (i < 1) && vp8_input_stats(cpi,&next_frame) != EOF ) |
| { |
| |
| next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error); |
| next_iiratio = ( next_iiratio < 1.0 ) ? 1.0 : (next_iiratio > 20.0) ? 20.0 : next_iiratio; |
| sum_iiratio += next_iiratio; |
| i++; |
| } |
| if ( i > 0 ) |
| { |
| relative_next_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK(cpi->avg_iiratio * (double)i); |
| } |
| else |
| { |
| relative_next_iiratio = 1.0; |
| } |
| reset_fpf_position(cpi, start_pos);*/ |
| |
| if (this_err > av_err) |
| modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); |
| else |
| modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); |
| |
| /* |
| relative_next_iiratio = pow(relative_next_iiratio,0.25); |
| modified_err = modified_err * relative_next_iiratio; |
| */ |
| |
| return modified_err; |
| } |
| |
| double vp8_simple_weight(YV12_BUFFER_CONFIG *source) |
| { |
| int i, j; |
| |
| unsigned char *src = source->y_buffer; |
| unsigned char value; |
| double sum_weights = 0.0; |
| double Weight; |
| |
| // Loop throught the Y plane raw examining levels and creating a weight for the image |
| for (i = 0; i < source->y_height; i++) |
| { |
| for (j = 0; j < source->y_width; j++) |
| { |
| value = src[j]; |
| |
| if (value >= 64) |
| Weight = 1.0; |
| else if (value > 32) |
| Weight = (value - 32.0f) / 32.0f; |
| else |
| Weight = 0.02; |
| |
| sum_weights += Weight; |
| } |
| |
| src += source->y_stride; |
| } |
| |
| sum_weights /= (source->y_height * source->y_width); |
| |
| return sum_weights; |
| } |
| |
| // This function returns the current per frame maximum bitrate target |
| int frame_max_bits(VP8_COMP *cpi) |
| { |
| // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left |
| int max_bits; |
| |
| // For CBR we need to also consider buffer fullness. |
| // If we are running below the optimal level then we need to gradually tighten up on max_bits. |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); |
| |
| // For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user |
| max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
| |
| // If our buffer is below the optimum level |
| if (buffer_fullness_ratio < 1.0) |
| { |
| // The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. |
| int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; |
| |
| max_bits = (int)(max_bits * buffer_fullness_ratio); |
| |
| if (max_bits < min_max_bits) |
| max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil. |
| } |
| } |
| // VBR |
| else |
| { |
| // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user |
| max_bits = (int)(((double)cpi->bits_left / (cpi->total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); |
| } |
| |
| // Trap case where we are out of bits |
| if (max_bits < 0) |
| max_bits = 0; |
| |
| return max_bits; |
| } |
| |
| void vp8_output_stats(struct vpx_codec_pkt_list *pktlist, |
| FIRSTPASS_STATS *stats) |
| { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_STATS_PKT; |
| pkt.data.twopass_stats.buf = stats; |
| pkt.data.twopass_stats.sz = sizeof(*stats); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| |
| // TEMP debug code |
| #ifdef OUTPUT_FPF |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.0f\n", |
| stats->frame, |
| stats->intra_error, |
| stats->coded_error, |
| stats->ssim_weighted_pred_err, |
| stats->pcnt_inter, |
| stats->pcnt_motion, |
| stats->pcnt_second_ref, |
| stats->MVr, |
| stats->mvr_abs, |
| stats->MVc, |
| stats->mvc_abs, |
| stats->MVrv, |
| stats->MVcv, |
| stats->mv_in_out_count, |
| stats->count); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| int vp8_input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) |
| { |
| if (cpi->stats_in >= cpi->stats_in_end) |
| return EOF; |
| |
| *fps = *cpi->stats_in++; |
| return 1; |
| } |
| |
| void vp8_zero_stats(FIRSTPASS_STATS *section) |
| { |
| section->frame = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->ssim_weighted_pred_err = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| } |
| void vp8_accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) |
| { |
| section->frame += frame->frame; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| void vp8_avg_stats(FIRSTPASS_STATS *section) |
| { |
| if (section->count < 1.0) |
| return; |
| |
| section->intra_error /= section->count; |
| section->coded_error /= section->count; |
| section->ssim_weighted_pred_err /= section->count; |
| section->pcnt_inter /= section->count; |
| section->pcnt_second_ref /= section->count; |
| section->pcnt_motion /= section->count; |
| section->MVr /= section->count; |
| section->mvr_abs /= section->count; |
| section->MVc /= section->count; |
| section->mvc_abs /= section->count; |
| section->MVrv /= section->count; |
| section->MVcv /= section->count; |
| section->mv_in_out_count /= section->count; |
| section->duration /= section->count; |
| } |
| |
| int vp8_fpmm_get_pos(VP8_COMP *cpi) |
| { |
| return ftell(cpi->fp_motion_mapfile); |
| } |
| void vp8_fpmm_reset_pos(VP8_COMP *cpi, int target_pos) |
| { |
| int Offset; |
| |
| if (cpi->fp_motion_mapfile) |
| { |
| Offset = ftell(cpi->fp_motion_mapfile) - target_pos; |
| fseek(cpi->fp_motion_mapfile, (int) - Offset, SEEK_CUR); |
| } |
| } |
| |
| void vp8_advance_fpmm(VP8_COMP *cpi, int count) |
| { |
| #ifdef FIRSTPASS_MM |
| fseek(cpi->fp_motion_mapfile, (int)(count * cpi->common.MBs), SEEK_CUR); |
| #endif |
| } |
| |
| void vp8_input_fpmm(VP8_COMP *cpi, int count) |
| { |
| #ifdef FIRSTPASS_MM |
| |
| unsigned char *tmp_motion_map; |
| int i, j; |
| |
| if (!cpi->fp_motion_mapfile) |
| return; // Error |
| |
| // Create the first pass motion map structure and set to 0 |
| CHECK_MEM_ERROR(tmp_motion_map, vpx_calloc(cpi->common.MBs, 1)); |
| |
| // Reset the state of the global map |
| vpx_memset(cpi->fp_motion_map, 0, cpi->common.MBs); |
| |
| // Read the specified number of frame maps and set the global map to the highest value seen for each mb. |
| for (i = 0; i < count; i++) |
| { |
| if (fread(tmp_motion_map, 1, cpi->common.MBs, cpi->fp_motion_mapfile) == cpi->common.MBs) |
| { |
| for (j = 0; j < cpi->common.MBs; j++) |
| { |
| if (tmp_motion_map[j] > 1) |
| cpi->fp_motion_map[j] += 5; // Intra is flagged |
| else |
| cpi->fp_motion_map[j] += tmp_motion_map[j]; |
| } |
| } |
| else |
| break; // Read error |
| |
| } |
| |
| if (tmp_motion_map != 0) |
| vpx_free(tmp_motion_map); |
| |
| #endif |
| |
| } |
| |
| void vp8_init_first_pass(VP8_COMP *cpi) |
| { |
| vp8_zero_stats(&cpi->total_stats); |
| |
| #ifdef FIRSTPASS_MM |
| cpi->fp_motion_mapfile = fopen("fpmotionmap.stt", "wb"); |
| #endif |
| |
| // TEMP debug code |
| #ifdef OUTPUT_FPF |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "w"); |
| fclose(fpfile); |
| } |
| #endif |
| |
| } |
| |
| void vp8_end_first_pass(VP8_COMP *cpi) |
| { |
| vp8_output_stats(cpi->output_pkt_list, &cpi->total_stats); |
| |
| #ifdef FIRSTPASS_MM |
| |
| if (cpi->fp_motion_mapfile) |
| fclose(cpi->fp_motion_mapfile); |
| |
| #endif |
| |
| } |
| void vp8_zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset ) |
| { |
| MACROBLOCKD * const xd = & x->e_mbd; |
| BLOCK *b = &x->block[0]; |
| BLOCKD *d = &x->e_mbd.block[0]; |
| |
| unsigned char *src_ptr = (*(b->base_src) + b->src); |
| int src_stride = b->src_stride; |
| unsigned char *ref_ptr; |
| int ref_stride=d->pre_stride; |
| |
| // Set up pointers for this macro block recon buffer |
| xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
| |
| ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre ); |
| |
| VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); |
| } |
| |
| |
| void vp8_first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, MV *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset ) |
| { |
| MACROBLOCKD *const xd = & x->e_mbd; |
| BLOCK *b = &x->block[0]; |
| BLOCKD *d = &x->e_mbd.block[0]; |
| int num00; |
| |
| MV tmp_mv = {0, 0}; |
| |
| int tmp_err; |
| int step_param = 3; //3; // Dont search over full range for first pass |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3; |
| int n; |
| vp8_variance_fn_ptr_t v_fn_ptr; |
| int new_mv_mode_penalty = 256; |
| |
| v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16); |
| v_fn_ptr.sdf = cpi->fn_ptr.sdf; |
| v_fn_ptr.sdx4df = cpi->fn_ptr.sdx4df; |
| |
| // Set up pointers for this macro block recon buffer |
| xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; |
| |
| // Initial step/diamond search centred on best mv |
| tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost); |
| if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) |
| { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.row; |
| best_mv->col = tmp_mv.col; |
| } |
| |
| // Further step/diamond searches as necessary |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) |
| { |
| n++; |
| |
| if (num00) |
| num00--; |
| else |
| { |
| tmp_err = cpi->diamond_search_sad(x, b, d, ref_mv, &tmp_mv, step_param + n, x->errorperbit, &num00, &v_fn_ptr, x->mvsadcost, x->mvcost); |
| if ( tmp_err < INT_MAX-new_mv_mode_penalty ) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) |
| { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.row; |
| best_mv->col = tmp_mv.col; |
| } |
| } |
| } |
| } |
| |
| void vp8_first_pass(VP8_COMP *cpi) |
| { |
| int mb_row, mb_col; |
| MACROBLOCK *const x = & cpi->mb; |
| VP8_COMMON *const cm = & cpi->common; |
| MACROBLOCKD *const xd = & x->e_mbd; |
| |
| int col_blocks = 4 * cm->mb_cols; |
| int recon_yoffset, recon_uvoffset; |
| YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; |
| YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; |
| YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; |
| int recon_y_stride = lst_yv12->y_stride; |
| int recon_uv_stride = lst_yv12->uv_stride; |
| int intra_error = 0; |
| int coded_error = 0; |
| |
| int sum_mvr = 0, sum_mvc = 0; |
| int sum_mvr_abs = 0, sum_mvc_abs = 0; |
| int sum_mvrs = 0, sum_mvcs = 0; |
| int mvcount = 0; |
| int intercount = 0; |
| int second_ref_count = 0; |
| int intrapenalty = 256; |
| |
| int sum_in_vectors = 0; |
| |
| MV best_ref_mv = {0, 0}; |
| MV zero_ref_mv = {0, 0}; |
| |
| unsigned char *fp_motion_map_ptr = cpi->fp_motion_map; |
| |
| vp8_clear_system_state(); //__asm emms; |
| |
| x->src = * cpi->Source; |
| xd->pre = *lst_yv12; |
| xd->dst = *new_yv12; |
| |
| x->partition_info = x->pi; |
| |
| xd->mode_info_context = cm->mi; |
| |
| vp8_build_block_offsets(x); |
| |
| vp8_setup_block_dptrs(&x->e_mbd); |
| |
| vp8_setup_block_ptrs(x); |
| |
| // set up frame new frame for intra coded blocks |
| vp8_setup_intra_recon(new_yv12); |
| vp8cx_frame_init_quantizer(cpi); |
| |
| // Initialise the MV cost table to the defaults |
| //if( cm->current_video_frame == 0) |
| //if ( 0 ) |
| { |
| int flag[2] = {1, 1}; |
| vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); |
| vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); |
| vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag); |
| } |
| |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) |
| { |
| MV best_ref_mv = {0, 0}; |
| |
| // reset above block coeffs |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * 8); |
| |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) |
| { |
| int this_error; |
| int gf_motion_error = INT_MAX; |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| |
| xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; |
| xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; |
| xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| |
| // do intra 16x16 prediction |
| this_error = vp8_encode_intra(cpi, x, use_dc_pred); |
| |
| // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) |
| // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. |
| // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. |
| // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
| this_error += intrapenalty; |
| |
| // Cumulative intra error total |
| intra_error += this_error; |
| |
| // Indicate default assumption of intra in the motion map |
| *fp_motion_map_ptr = 2; |
| |
| // Set up limit values for motion vectors to prevent them extending outside the UMV borders |
| x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); |
| x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); |
| |
| // Other than for the first frame do a motion search |
| if (cm->current_video_frame > 0) |
| { |
| BLOCK *b = &x->block[0]; |
| BLOCKD *d = &x->e_mbd.block[0]; |
| MV tmp_mv = {0, 0}; |
| int tmp_err; |
| int motion_error = INT_MAX; |
| |
| // Simple 0,0 motion with no mv overhead |
| vp8_zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset ); |
| d->bmi.mv.as_mv.row = 0; |
| d->bmi.mv.as_mv.col = 0; |
| |
| // Test last reference frame using the previous best mv as the |
| // starting point (best reference) for the search |
| vp8_first_pass_motion_search(cpi, x, &best_ref_mv, |
| &d->bmi.mv.as_mv, lst_yv12, |
| &motion_error, recon_yoffset); |
| |
| // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well |
| if ((best_ref_mv.col != 0) || (best_ref_mv.row != 0)) |
| { |
| tmp_err = INT_MAX; |
| vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, |
| lst_yv12, &tmp_err, recon_yoffset); |
| |
| if ( tmp_err < motion_error ) |
| { |
| motion_error = tmp_err; |
| d->bmi.mv.as_mv.row = tmp_mv.row; |
| d->bmi.mv.as_mv.col = tmp_mv.col; |
| } |
| |
| } |
| |
| // Experimental search in a second reference frame ((0,0) based only) |
| if (cm->current_video_frame > 1) |
| { |
| vp8_first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); |
| |
| if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) |
| { |
| second_ref_count++; |
| //motion_error = gf_motion_error; |
| //d->bmi.mv.as_mv.row = tmp_mv.row; |
| //d->bmi.mv.as_mv.col = tmp_mv.col; |
| } |
| /*else |
| { |
| xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset; |
| xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset; |
| xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset; |
| }*/ |
| |
| |
| // Reset to last frame as reference buffer |
| xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; |
| xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; |
| xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; |
| } |
| |
| if (motion_error <= this_error) |
| { |
| d->bmi.mv.as_mv.row <<= 3; |
| d->bmi.mv.as_mv.col <<= 3; |
| this_error = motion_error; |
| vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv.as_mv); |
| vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x); |
| sum_mvr += d->bmi.mv.as_mv.row; |
| sum_mvr_abs += abs(d->bmi.mv.as_mv.row); |
| sum_mvc += d->bmi.mv.as_mv.col; |
| sum_mvc_abs += abs(d->bmi.mv.as_mv.col); |
| sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; |
| sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; |
| intercount++; |
| |
| best_ref_mv.row = d->bmi.mv.as_mv.row; |
| best_ref_mv.col = d->bmi.mv.as_mv.col; |
| //best_ref_mv.row = 0; |
| //best_ref_mv.col = 0; |
| |
| // Was the vector non-zero |
| if (d->bmi.mv.as_mv.row || d->bmi.mv.as_mv.col) |
| { |
| mvcount++; |
| |
| *fp_motion_map_ptr = 1; |
| |
| // Does the Row vector point inwards or outwards |
| if (mb_row < cm->mb_rows / 2) |
| { |
| if (d->bmi.mv.as_mv.row > 0) |
| sum_in_vectors--; |
| else if (d->bmi.mv.as_mv.row < 0) |
| sum_in_vectors++; |
| } |
| else if (mb_row > cm->mb_rows / 2) |
| { |
| if (d->bmi.mv.as_mv.row > 0) |
| sum_in_vectors++; |
| else if (d->bmi.mv.as_mv.row < 0) |
| sum_in_vectors--; |
| } |
| |
| // Does the Row vector point inwards or outwards |
| if (mb_col < cm->mb_cols / 2) |
| { |
| if (d->bmi.mv.as_mv.col > 0) |
| sum_in_vectors--; |
| else if (d->bmi.mv.as_mv.col < 0) |
| sum_in_vectors++; |
| } |
| else if (mb_col > cm->mb_cols / 2) |
| { |
| if (d->bmi.mv.as_mv.col > 0) |
| sum_in_vectors++; |
| else if (d->bmi.mv.as_mv.col < 0) |
| sum_in_vectors--; |
| } |
| } |
| else |
| *fp_motion_map_ptr = 0; // 0,0 mv was best |
| } |
| else |
| { |
| best_ref_mv.row = 0; |
| best_ref_mv.col = 0; |
| } |
| } |
| |
| coded_error += this_error; |
| |
| // adjust to the next column of macroblocks |
| x->src.y_buffer += 16; |
| x->src.u_buffer += 8; |
| x->src.v_buffer += 8; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += 8; |
| |
| // Update the motion map |
| fp_motion_map_ptr++; |
| } |
| |
| // adjust to the next row of mbs |
| x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; |
| x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; |
| |
| //extend the recon for intra prediction |
| vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); |
| vp8_clear_system_state(); //__asm emms; |
| } |
| |
| vp8_clear_system_state(); //__asm emms; |
| { |
| double weight = 0.0; |
| |
| FIRSTPASS_STATS fps; |
| |
| fps.frame = cm->current_video_frame ; |
| fps.intra_error = intra_error >> 8; |
| fps.coded_error = coded_error >> 8; |
| weight = vp8_simple_weight(cpi->Source); |
| |
| if (weight < 0.1) |
| weight = 0.1; |
| |
| fps.ssim_weighted_pred_err = fps.coded_error * weight; |
| |
| fps.pcnt_inter = 0.0; |
| fps.pcnt_motion = 0.0; |
| fps.MVr = 0.0; |
| fps.mvr_abs = 0.0; |
| fps.MVc = 0.0; |
| fps.mvc_abs = 0.0; |
| fps.MVrv = 0.0; |
| fps.MVcv = 0.0; |
| fps.mv_in_out_count = 0.0; |
| fps.count = 1.0; |
| |
| fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
| fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
| |
| if (mvcount > 0) |
| { |
| fps.MVr = (double)sum_mvr / (double)mvcount; |
| fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
| fps.MVc = (double)sum_mvc / (double)mvcount; |
| fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
| fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; |
| fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; |
| fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
| |
| fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
| } |
| |
| // TODO: handle the case when duration is set to 0, or something less |
| // than the full time between subsequent cpi->source_time_stamp s . |
| fps.duration = cpi->source_end_time_stamp - cpi->source_time_stamp; |
| |
| // don't want to do outputstats with a stack variable! |
| cpi->this_frame_stats = fps; |
| vp8_output_stats(cpi->output_pkt_list, &cpi->this_frame_stats); |
| vp8_accumulate_stats(&cpi->total_stats, &fps); |
| |
| #ifdef FIRSTPASS_MM |
| fwrite(cpi->fp_motion_map, 1, cpi->common.MBs, cpi->fp_motion_mapfile); |
| #endif |
| } |
| |
| // Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met |
| if ((cm->current_video_frame > 0) && |
| (cpi->this_frame_stats.pcnt_inter > 0.20) && |
| ((cpi->this_frame_stats.intra_error / cpi->this_frame_stats.coded_error) > 2.0)) |
| { |
| vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); |
| } |
| |
| // swap frame pointers so last frame refers to the frame we just compressed |
| vp8_swap_yv12_buffer(lst_yv12, new_yv12); |
| vp8_yv12_extend_frame_borders(lst_yv12); |
| |
| // Special case for the first frame. Copy into the GF buffer as a second reference. |
| if (cm->current_video_frame == 0) |
| { |
| vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); |
| } |
| |
| |
| // use this to see what the first pass reconstruction looks like |
| if (0) |
| { |
| char filename[512]; |
| FILE *recon_file; |
| sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| |
| cm->current_video_frame++; |
| |
| } |
| extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; |
| |
| #define BASE_ERRPERMB 150 |
| static int estimate_max_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width) |
| { |
| int Q; |
| int num_mbs = ((Height * Width) / (16 * 16)); |
| int target_norm_bits_per_mb; |
| |
| double err_per_mb = section_err / num_mbs; |
| double correction_factor; |
| double corr_high; |
| double speed_correction = 1.0; |
| double rolling_ratio; |
| |
| double pow_highq = 0.90; |
| double pow_lowq = 0.40; |
| |
| if (section_target_bandwitdh <= 0) |
| return MAXQ; |
| |
| target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); |
| |
| // Calculate a corrective factor based on a rolling ratio of bits spent vs target bits |
| if ((cpi->rolling_target_bits > 0.0) && (cpi->active_worst_quality < cpi->worst_quality)) |
| { |
| //double adjustment_rate = 0.985 + (0.00005 * cpi->active_worst_quality); |
| double adjustment_rate = 0.99; |
| |
| rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; |
| |
| //if ( cpi->est_max_qcorrection_factor > rolling_ratio ) |
| if (rolling_ratio < 0.95) |
| //cpi->est_max_qcorrection_factor *= adjustment_rate; |
| cpi->est_max_qcorrection_factor -= 0.005; |
| //else if ( cpi->est_max_qcorrection_factor < rolling_ratio ) |
| else if (rolling_ratio > 1.05) |
| cpi->est_max_qcorrection_factor += 0.005; |
| |
| //cpi->est_max_qcorrection_factor /= adjustment_rate; |
| |
| cpi->est_max_qcorrection_factor = (cpi->est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->est_max_qcorrection_factor; |
| } |
| |
| // Corrections for higher compression speed settings (reduced compression expected) |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| // Correction factor used for Q values >= 20 |
| corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq); |
| corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high; |
| |
| // Try and pick a Q that should be high enough to encode the content at the given rate. |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| int bits_per_mb_at_this_q; |
| |
| if (Q < 50) |
| { |
| correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01)); |
| correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; |
| } |
| else |
| correction_factor = corr_high; |
| |
| bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * cpi->section_max_qfactor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
| //bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| return Q; |
| } |
| static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width) |
| { |
| int Q; |
| int num_mbs = ((Height * Width) / (16 * 16)); |
| int target_norm_bits_per_mb; |
| |
| double err_per_mb = section_err / num_mbs; |
| double correction_factor; |
| double corr_high; |
| double speed_correction = 1.0; |
| double pow_highq = 0.90; |
| double pow_lowq = 0.40; |
| |
| target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); |
| |
| // Corrections for higher compression speed settings (reduced compression expected) |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| // Correction factor used for Q values >= 20 |
| corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq); |
| corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high; |
| |
| // Try and pick a Q that can encode the content at the given rate. |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| int bits_per_mb_at_this_q; |
| |
| if (Q < 50) |
| { |
| correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01)); |
| correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; |
| } |
| else |
| correction_factor = corr_high; |
| |
| bits_per_mb_at_this_q = (int)(.5 + correction_factor * speed_correction * cpi->est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| return Q; |
| } |
| |
| // Estimate a worst case Q for a KF group |
| static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, int Height, int Width, double group_iiratio) |
| { |
| int Q; |
| int num_mbs = ((Height * Width) / (16 * 16)); |
| int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; |
| int bits_per_mb_at_this_q; |
| |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double corr_high; |
| double speed_correction = 1.0; |
| double current_spend_ratio = 1.0; |
| |
| double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; |
| double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; |
| |
| double iiratio_correction_factor = 1.0; |
| |
| double combined_correction_factor; |
| |
| // Trap special case where the target is <= 0 |
| if (target_norm_bits_per_mb <= 0) |
| return MAXQ * 2; |
| |
| // Calculate a corrective factor based on a rolling ratio of bits spent vs target bits |
| // This is clamped to the range 0.1 to 10.0 |
| if (cpi->long_rolling_target_bits <= 0) |
| current_spend_ratio = 10.0; |
| else |
| { |
| current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; |
| current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; |
| } |
| |
| // Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio) |
| // The idea here is to favour subsampling in the hardest sections vs the easyest. |
| iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); |
| |
| if (iiratio_correction_factor < 0.5) |
| iiratio_correction_factor = 0.5; |
| |
| // Corrections for higher compression speed settings (reduced compression expected) |
| if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) |
| { |
| if (cpi->oxcf.cpu_used <= 5) |
| speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); |
| else |
| speed_correction = 1.25; |
| } |
| |
| // Combine the various factors calculated above |
| combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; |
| |
| // Correction factor used for Q values >= 20 |
| corr_high = pow(err_per_mb / BASE_ERRPERMB, pow_highq); |
| corr_high = (corr_high < 0.05) ? 0.05 : (corr_high > 5.0) ? 5.0 : corr_high; |
| |
| // Try and pick a Q that should be high enough to encode the content at the given rate. |
| for (Q = 0; Q < MAXQ; Q++) |
| { |
| // Q values < 20 treated as a special case |
| if (Q < 20) |
| { |
| err_correction_factor = pow(err_per_mb / BASE_ERRPERMB, (pow_lowq + Q * 0.01)); |
| err_correction_factor = (err_correction_factor < 0.05) ? 0.05 : (err_correction_factor > 5.0) ? 5.0 : err_correction_factor; |
| } |
| else |
| err_correction_factor = corr_high; |
| |
| bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q]); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| // If we could not hit the target even at Max Q then estimate what Q would have bee required |
| while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) |
| { |
| |
| bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); |
| Q++; |
| } |
| |
| if (0) |
| { |
| FILE *f = fopen("estkf_q.stt", "a"); |
| fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, |
| target_norm_bits_per_mb, err_per_mb, err_correction_factor, |
| current_spend_ratio, group_iiratio, iiratio_correction_factor, |
| (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); |
| fclose(f); |
| } |
| |
| return Q; |
| } |
| extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate); |
| |
| void vp8_init_second_pass(VP8_COMP *cpi) |
| { |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS *start_pos; |
| |
| double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| vp8_zero_stats(&cpi->total_stats); |
| |
| if (!cpi->stats_in_end) |
| return; |
| |
| cpi->total_stats = *cpi->stats_in_end; |
| |
| cpi->total_error_left = cpi->total_stats.ssim_weighted_pred_err; |
| cpi->total_intra_error_left = cpi->total_stats.intra_error; |
| cpi->total_coded_error_left = cpi->total_stats.coded_error; |
| cpi->start_tot_err_left = cpi->total_error_left; |
| |
| //cpi->bits_left = (long long)(cpi->total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
| //cpi->bits_left -= (long long)(cpi->total_stats.count * two_pass_min_rate / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
| |
| // each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However the sum duration is not. |
| // Its calculated based on the actual durations of all frames from the first |
| // pass. |
| vp8_new_frame_rate(cpi, 10000000.0 * cpi->total_stats.count / cpi->total_stats.duration); |
| |
| cpi->output_frame_rate = cpi->oxcf.frame_rate; |
| cpi->bits_left = (long long)(cpi->total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; |
| cpi->bits_left -= (long long)(cpi->total_stats.duration * two_pass_min_rate / 10000000.0); |
| |
| vp8_avg_stats(&cpi->total_stats); |
| |
| // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence |
| { |
| double sum_iiratio = 0.0; |
| double IIRatio; |
| |
| start_pos = cpi->stats_in; // Note starting "file" position |
| |
| while (vp8_input_stats(cpi, &this_frame) != EOF) |
| { |
| IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
| IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
| sum_iiratio += IIRatio; |
| } |
| |
| cpi->avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->total_stats.count); |
| |
| // Reset file position |
| reset_fpf_position(cpi, start_pos); |
| } |
| |
| // Scan the first pass file and calculate a modified total error based upon the bias/power function |
| // used to allocate bits |
| { |
| start_pos = cpi->stats_in; // Note starting "file" position |
| |
| cpi->modified_total_error_left = 0.0; |
| |
| while (vp8_input_stats(cpi, &this_frame) != EOF) |
| { |
| cpi->modified_total_error_left += calculate_modified_err(cpi, &this_frame); |
| } |
| |
| reset_fpf_position(cpi, start_pos); // Reset file position |
| |
| } |
| |
| #ifdef FIRSTPASS_MM |
| cpi->fp_motion_mapfile = 0; |
| cpi->fp_motion_mapfile = fopen("fpmotionmap.stt", "rb"); |
| #endif |
| |
| } |
| |
| void vp8_end_second_pass(VP8_COMP *cpi) |
| { |
| #ifdef FIRSTPASS_MM |
| |
| if (cpi->fp_motion_mapfile) |
| fclose(cpi->fp_motion_mapfile); |
| |
| #endif |
| } |
| |
| // Analyse and define a gf/arf group . |
| static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS *start_pos; |
| int i; |
| int y_width = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_width; |
| int y_height = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_height; |
| int image_size = y_width * y_height; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double gf_group_err = 0.0; |
| double gf_first_frame_err = 0.0; |
| double mod_frame_err = 0.0; |
| |
| double mv_accumulator_rabs = 0.0; |
| double mv_accumulator_cabs = 0.0; |
| double this_mv_rabs; |
| double this_mv_cabs; |
| double mv_ratio_accumulator = 0.0; |
| double distance_factor = 0.0; |
| double decay_accumulator = 1.0; |
| |
| double boost_factor = IIFACTOR; |
| double loop_decay_rate = 1.00; // Starting decay rate |
| |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double mod_err_per_mb_accumulator = 0.0; |
| |
| int max_bits = frame_max_bits(cpi); // Max for a single frame |
| |
| #ifdef FIRSTPASS_MM |
| int fpmm_pos; |
| #endif |
| |
| cpi->gf_group_bits = 0; |
| cpi->gf_decay_rate = 0; |
| |
| vp8_clear_system_state(); //__asm emms; |
| |
| #ifdef FIRSTPASS_MM |
| fpmm_pos = vp8_fpmm_get_pos(cpi); |
| #endif |
| |
| start_pos = cpi->stats_in; |
| |
| vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
| |
| // Preload the stats for the next frame. |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| |
| // Note the error of the frame at the start of the group (this will be the GF frame error if we code a normal gf |
| gf_first_frame_err = mod_frame_err; |
| |
| // Special treatment if the current frame is a key frame (which is also a gf). |
| // If it is then its error score (and hence bit allocation) need to be subtracted out |
| // from the calculation for the GF group |
| if (cpi->common.frame_type == KEY_FRAME) |
| gf_group_err -= gf_first_frame_err; |
| |
| // Scan forward to try and work out how many frames the next gf group should contain and |
| // what level of boost is appropriate for the GF or ARF that will be coded with the group |
| i = 0; |
| |
| while (((i < cpi->max_gf_interval) || ((cpi->frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->frames_to_key)) |
| { |
| double r; |
| double motion_factor; |
| double this_frame_mvr_ratio; |
| double this_frame_mvc_ratio; |
| |
| i++; // Increment the loop counter |
| |
| // Accumulate error score of frames in this gf group |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| |
| gf_group_err += mod_frame_err; |
| |
| mod_err_per_mb_accumulator += mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); |
| |
| if (EOF == vp8_input_stats(cpi, &next_frame)) |
| break; |
| |
| // Accumulate motion stats. |
| motion_factor = next_frame.pcnt_motion; |
| this_mv_rabs = fabs(next_frame.mvr_abs * motion_factor); |
| this_mv_cabs = fabs(next_frame.mvc_abs * motion_factor); |
| |
| mv_accumulator_rabs += fabs(next_frame.mvr_abs * motion_factor); |
| mv_accumulator_cabs += fabs(next_frame.mvc_abs * motion_factor); |
| |
| //Accumulate Motion In/Out of frame stats |
| this_frame_mv_in_out = next_frame.mv_in_out_count * next_frame.pcnt_motion; |
| mv_in_out_accumulator += next_frame.mv_in_out_count * next_frame.pcnt_motion; |
| abs_mv_in_out_accumulator += fabs(next_frame.mv_in_out_count * next_frame.pcnt_motion); |
| |
| // If there is a significant amount of motion |
| if (motion_factor > 0.05) |
| { |
| this_frame_mvr_ratio = fabs(next_frame.mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVr)); |
| this_frame_mvc_ratio = fabs(next_frame.mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(next_frame.MVc)); |
| |
| mv_ratio_accumulator += (this_frame_mvr_ratio < next_frame.mvr_abs) ? (this_frame_mvr_ratio * motion_factor) : next_frame.mvr_abs * motion_factor; |
| mv_ratio_accumulator += (this_frame_mvc_ratio < next_frame.mvc_abs) ? (this_frame_mvc_ratio * motion_factor) : next_frame.mvc_abs * motion_factor; |
| } |
| else |
| { |
| mv_ratio_accumulator += 0.0; |
| this_frame_mvr_ratio = 1.0; |
| this_frame_mvc_ratio = 1.0; |
| } |
| |
| // Underlying boost factor is based on inter intra error ratio |
| r = (boost_factor * (next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error))); |
| |
| // Increase boost for frames where new data coming into frame (eg zoom out) |
| // Slightly reduce boost if there is a net balance of motion out of the frame (zoom in) |
| // The range for this_frame_mv_in_out is -1.0 to +1.0 |
| if (this_frame_mv_in_out > 0.0) |
| r += r * (this_frame_mv_in_out * 2.0); |
| else |
| r += r * (this_frame_mv_in_out / 2.0); // In extreme case boost is halved |
| |
| if (r > GF_RMAX) |
| r = GF_RMAX; |
| |
| // Adjust loop decay rate |
| //if ( next_frame.pcnt_inter < loop_decay_rate ) |
| loop_decay_rate = next_frame.pcnt_inter; |
| |
| // High % motion -> somewhat higher decay rate |
| if ((1.0 - (next_frame.pcnt_motion / 10.0)) < loop_decay_rate) |
| loop_decay_rate = (1.0 - (next_frame.pcnt_motion / 10.0)); |
| |
| distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / 300.0; |
| distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); |
| |
| if (distance_factor < loop_decay_rate) |
| loop_decay_rate = distance_factor; |
| |
| // Cumulative effect of decay |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; |
| //decay_accumulator = ( loop_decay_rate < decay_accumulator ) ? loop_decay_rate : decay_accumulator; |
| |
| boost_score += (decay_accumulator * r); |
| |
| // Break out conditions. |
| if ( /* i>4 || */ |
| ( |
| (i > MIN_GF_INTERVAL) && // Dont break out with a very short interval |
| ((cpi->frames_to_key - i) >= MIN_GF_INTERVAL) && // Dont break out very close to a key frame |
| ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && |
| ((mv_ratio_accumulator > 100.0) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) || |
| ((boost_score - old_boost_score) < 2.0) |
| ) |
| ) |
| ) |
| { |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); |
| |
| old_boost_score = boost_score; |
| } |
| |
| cpi->gf_decay_rate = (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; |
| |
| // When using CBR apply additional buffer related upper limits |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double max_boost; |
| |
| // For cbr apply buffer related limits |
| if (cpi->drop_frames_allowed) |
| { |
| int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100); |
| |
| if (cpi->buffer_level > df_buffer_level) |
| max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| else |
| max_boost = 0.0; |
| } |
| else if (cpi->buffer_level > 0) |
| { |
| max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| } |
| else |
| { |
| max_boost = 0.0; |
| } |
| |
| if (boost_score > max_boost) |
| boost_score = max_boost; |
| } |
| |
| cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; |
| |
| // Should we use the alternate refernce frame |
| if (cpi->oxcf.play_alternate && |
| cpi->oxcf.lag_in_frames && |
| (i >= MIN_GF_INTERVAL) && |
| (i <= (cpi->frames_to_key - MIN_GF_INTERVAL)) && // dont use ARF very near next kf |
| (((next_frame.pcnt_inter > 0.75) && |
| ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && |
| //(cpi->gfu_boost>150) && |
| (cpi->gfu_boost > 100) && |
| //(cpi->gfu_boost>AF_THRESH2) && |
| //((cpi->gfu_boost/i)>AF_THRESH) && |
| //(decay_accumulator > 0.5) && |
| (cpi->gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) |
| ) |
| ) |
| ) |
| { |
| int Boost; |
| int allocation_chunks; |
| int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| int tmp_q; |
| int arf_frame_bits = 0; |
| int group_bits; |
| |
| // Estimate the bits to be allocated to the group as a whole |
| if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0)) |
| group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left)); |
| else |
| group_bits = 0; |
| |
| // Boost for arf frame |
| Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
| Boost += (cpi->baseline_gf_interval * 50); |
| allocation_chunks = (i * 100) + Boost; |
| |
| // Normalize Altboost and allocations chunck down to prevent overflow |
| while (Boost > 1000) |
| { |
| Boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| // Calculate the number of bits to be spent on the arf based on the boost number |
| arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks)); |
| |
| // Estimate if there are enough bits available to make worthwhile use of an arf. |
| tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits, cpi->common.Height, cpi->common.Width); |
| |
| // Only use an arf if it is likely we will be able to code it at a lower Q than the surrounding frames. |
| if (tmp_q < cpi->worst_quality) |
| { |
| cpi->source_alt_ref_pending = TRUE; |
| |
| // For alt ref frames the error score for the end frame of the group (the alt ref frame) should not contribute to the group total and hence |
| // the number of bit allocated to the group. Rather it forms part of the next group (it is the GF at the start of the next group) |
| gf_group_err -= mod_frame_err; |
| |
| // Set the interval till the next gf or arf. For ARFs this is the number of frames to be coded before the future frame that is coded as an ARF. |
| // The future frame itself is part of the next group |
| cpi->baseline_gf_interval = i - 1; |
| |
| #ifdef FIRSTPASS_MM |
| // Read through the motion map to load up the entry for the ARF |
| { |
| int j; |
| |
| // Advance to the region of interest |
| // Current default 2 frames before to 2 frames after the ARF frame itsef |
| vp8_fpmm_reset_pos(cpi, cpi->fpmm_pos); |
| |
| for (j = 0; j < cpi->baseline_gf_interval - 2; j++) |
| vp8_advance_fpmm(cpi, 1); |
| |
| // Read / create a motion map for the region of interest |
| vp8_input_fpmm(cpi, 5); |
| } |
| #endif |
| } |
| else |
| { |
| cpi->source_alt_ref_pending = FALSE; |
| cpi->baseline_gf_interval = i; |
| } |
| } |
| else |
| { |
| cpi->source_alt_ref_pending = FALSE; |
| cpi->baseline_gf_interval = i; |
| } |
| |
| // Conventional GF |
| if (!cpi->source_alt_ref_pending) |
| { |
| // Dont allow conventional gf too near the next kf |
| if ((cpi->frames_to_key - cpi->baseline_gf_interval) < MIN_GF_INTERVAL) |
| { |
| while (cpi->baseline_gf_interval < cpi->frames_to_key) |
| { |
| if (EOF == vp8_input_stats(cpi, this_frame)) |
| break; |
| |
| cpi->baseline_gf_interval++; |
| |
| if (cpi->baseline_gf_interval < cpi->frames_to_key) |
| gf_group_err += calculate_modified_err(cpi, this_frame); |
| } |
| } |
| } |
| |
| // Now decide how many bits should be allocated to the GF group as a proportion of those remaining in the kf group. |
| // The final key frame group in the clip is treated as a special case where cpi->kf_group_bits is tied to cpi->bits_left. |
| // This is also important for short clips where there may only be one key frame. |
| if (cpi->frames_to_key >= (int)(cpi->total_stats.count - cpi->common.current_video_frame)) |
| { |
| cpi->kf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0; |
| } |
| |
| // Calculate the bits to be allocated to the group as a whole |
| if ((cpi->kf_group_bits > 0) && (cpi->kf_group_error_left > 0)) |
| cpi->gf_group_bits = (int)((double)cpi->kf_group_bits * (gf_group_err / (double)cpi->kf_group_error_left)); |
| else |
| cpi->gf_group_bits = 0; |
| |
| cpi->gf_group_bits = (cpi->gf_group_bits < 0) ? 0 : (cpi->gf_group_bits > cpi->kf_group_bits) ? cpi->kf_group_bits : cpi->gf_group_bits; |
| |
| // Clip cpi->gf_group_bits based on user supplied data rate variability limit (cpi->oxcf.two_pass_vbrmax_section) |
| if (cpi->gf_group_bits > max_bits * cpi->baseline_gf_interval) |
| cpi->gf_group_bits = max_bits * cpi->baseline_gf_interval; |
| |
| // Reset the file position |
| reset_fpf_position(cpi, start_pos); |
| |
| // Assign bits to the arf or gf. |
| { |
| int Boost; |
| int frames_in_section; |
| int allocation_chunks; |
| int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; |
| |
| // For ARF frames |
| if (cpi->source_alt_ref_pending) |
| { |
| Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); |
| //Boost += (cpi->baseline_gf_interval * 25); |
| Boost += (cpi->baseline_gf_interval * 50); |
| |
| // Set max and minimum boost and hence minimum allocation |
| if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) |
| Boost = ((cpi->baseline_gf_interval + 1) * 200); |
| else if (Boost < 125) |
| Boost = 125; |
| |
| frames_in_section = cpi->baseline_gf_interval + 1; |
| allocation_chunks = (frames_in_section * 100) + Boost; |
| } |
| // Else for standard golden frames |
| else |
| { |
| // boost based on inter / intra ratio of subsequent frames |
| Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; |
| |
| // Set max and minimum boost and hence minimum allocation |
| if (Boost > (cpi->baseline_gf_interval * 150)) |
| Boost = (cpi->baseline_gf_interval * 150); |
| else if (Boost < 125) |
| Boost = 125; |
| |
| frames_in_section = cpi->baseline_gf_interval; |
| allocation_chunks = (frames_in_section * 100) + (Boost - 100); |
| } |
| |
| // Normalize Altboost and allocations chunck down to prevent overflow |
| while (Boost > 1000) |
| { |
| Boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| // Calculate the number of bits to be spent on the gf or arf based on the boost number |
| cpi->gf_bits = (int)((double)Boost * (cpi->gf_group_bits / (double)allocation_chunks)); |
| |
| // If the frame that is to be boosted is simpler than the average for |
| // the gf/arf group then use an alternative calculation |
| // based on the error score of the frame itself |
| if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) |
| { |
| double alt_gf_grp_bits; |
| int alt_gf_bits; |
| |
| alt_gf_grp_bits = |
| (double)cpi->kf_group_bits * |
| (mod_frame_err * (double)cpi->baseline_gf_interval) / |
| DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left); |
| |
| alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / |
| (double)allocation_chunks)); |
| |
| if (cpi->gf_bits > alt_gf_bits) |
| { |
| cpi->gf_bits = alt_gf_bits; |
| } |
| } |
| // Else if it is harder than other frames in the group make sure it at |
| // least receives an allocation in keeping with its relative error |
| // score, otherwise it may be worse off than an "un-boosted" frame |
| else |
| { |
| int alt_gf_bits = |
| (int)((double)cpi->kf_group_bits * |
| mod_frame_err / |
| DOUBLE_DIVIDE_CHECK((double)cpi->kf_group_error_left)); |
| |
| if (alt_gf_bits > cpi->gf_bits) |
| { |
| cpi->gf_bits = alt_gf_bits; |
| } |
| } |
| |
| // Apply an additional limit for CBR |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| if (cpi->gf_bits > (cpi->buffer_level >> 1)) |
| cpi->gf_bits = cpi->buffer_level >> 1; |
| } |
| |
| // Dont allow a negative value for gf_bits |
| if (cpi->gf_bits < 0) |
| cpi->gf_bits = 0; |
| |
| // Adjust KF group bits and error remainin |
| cpi->kf_group_error_left -= gf_group_err; |
| cpi->kf_group_bits -= cpi->gf_group_bits; |
| |
| if (cpi->kf_group_bits < 0) |
| cpi->kf_group_bits = 0; |
| |
| // Note the error score left in the remaining frames of the group. |
| // For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened) |
| if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) |
| cpi->gf_group_error_left = gf_group_err - gf_first_frame_err; |
| else |
| cpi->gf_group_error_left = gf_group_err; |
| |
| cpi->gf_group_bits -= cpi->gf_bits; |
| |
| if (cpi->gf_group_bits < 0) |
| cpi->gf_group_bits = 0; |
| |
| // Set aside some bits for a mid gf sequence boost |
| if ((cpi->gfu_boost > 150) && (cpi->baseline_gf_interval > 5)) |
| { |
| int pct_extra = (cpi->gfu_boost - 100) / 50; |
| pct_extra = (pct_extra > 10) ? 10 : pct_extra; |
| |
| cpi->mid_gf_extra_bits = (cpi->gf_group_bits * pct_extra) / 100; |
| cpi->gf_group_bits -= cpi->mid_gf_extra_bits; |
| } |
| else |
| cpi->mid_gf_extra_bits = 0; |
| |
| cpi->gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame |
| } |
| |
| if (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) // Normal GF and not a KF |
| { |
| cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for this frame |
| } |
| |
| // Adjustment to estimate_max_q based on a measure of complexity of the section |
| if (cpi->common.frame_type != KEY_FRAME) |
| { |
| FIRSTPASS_STATS sectionstats; |
| double Ratio; |
| |
| vp8_zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_pos); |
| |
| for (i = 0 ; i < cpi->baseline_gf_interval ; i++) |
| { |
| vp8_input_stats(cpi, &next_frame); |
| vp8_accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| vp8_avg_stats(§ionstats); |
| |
| if (sectionstats.pcnt_motion < .17) |
| cpi->section_is_low_motion = 1; |
| else |
| cpi->section_is_low_motion = 0; |
| |
| if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45) |
| cpi->section_is_fast_motion = 1; |
| else |
| cpi->section_is_fast_motion = 0; |
| |
| cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| |
| Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| //if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) |
| //{ |
| cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
| |
| if (cpi->section_max_qfactor < 0.80) |
| cpi->section_max_qfactor = 0.80; |
| |
| //} |
| //else |
| // cpi->section_max_qfactor = 1.0; |
| |
| reset_fpf_position(cpi, start_pos); |
| } |
| |
| #ifdef FIRSTPASS_MM |
| // Reset the First pass motion map file position |
| vp8_fpmm_reset_pos(cpi, fpmm_pos); |
| #endif |
| } |
| |
| // Allocate bits to a normal frame that is neither a gf an arf or a key frame. |
| static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| int target_frame_size; // gf_group_error_left |
| |
| double modified_err; |
| double err_fraction; // What portion of the remaining GF group error is used by this frame |
| |
| int max_bits = frame_max_bits(cpi); // Max for a single frame |
| |
| // The final few frames have special treatment |
| if (cpi->frames_till_gf_update_due >= (int)(cpi->total_stats.count - cpi->common.current_video_frame)) |
| { |
| cpi->gf_group_bits = (cpi->bits_left > 0) ? cpi->bits_left : 0;; |
| } |
| |
| // Calculate modified prediction error used in bit allocation |
| modified_err = calculate_modified_err(cpi, this_frame); |
| |
| if (cpi->gf_group_error_left > 0) |
| err_fraction = modified_err / cpi->gf_group_error_left; // What portion of the remaining GF group error is used by this frame |
| else |
| err_fraction = 0.0; |
| |
| target_frame_size = (int)((double)cpi->gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? |
| |
| // Clip to target size to 0 - max_bits (or cpi->gf_group_bits) at the top end. |
| if (target_frame_size < 0) |
| target_frame_size = 0; |
| else |
| { |
| if (target_frame_size > max_bits) |
| target_frame_size = max_bits; |
| |
| if (target_frame_size > cpi->gf_group_bits) |
| target_frame_size = cpi->gf_group_bits; |
| } |
| |
| cpi->gf_group_error_left -= modified_err; // Adjust error remaining |
| cpi->gf_group_bits -= target_frame_size; // Adjust bits remaining |
| |
| if (cpi->gf_group_bits < 0) |
| cpi->gf_group_bits = 0; |
| |
| target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame. |
| |
| // Special case for the frame that lies half way between two gfs |
| if (cpi->common.frames_since_golden == cpi->baseline_gf_interval / 2) |
| target_frame_size += cpi->mid_gf_extra_bits; |
| |
| cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame |
| } |
| |
| void vp8_second_pass(VP8_COMP *cpi) |
| { |
| int tmp_q; |
| int frames_left = (int)(cpi->total_stats.count - cpi->common.current_video_frame); |
| |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS this_frame_copy; |
| |
| VP8_COMMON *cm = &cpi->common; |
| |
| double this_frame_error; |
| double this_frame_intra_error; |
| double this_frame_coded_error; |
| |
| FIRSTPASS_STATS *start_pos; |
| |
| if (!cpi->stats_in) |
| { |
| return ; |
| } |
| |
| vp8_clear_system_state(); |
| |
| if (EOF == vp8_input_stats(cpi, &this_frame)) |
| return; |
| |
| #ifdef FIRSTPASS_MM |
| vpx_memset(cpi->fp_motion_map, 0, cpi->common.MBs); |
| cpi->fpmm_pos = vp8_fpmm_get_pos(cpi); |
| vp8_advance_fpmm(cpi, 1); // Read this frame's first pass motion map |
| #endif |
| |
| this_frame_error = this_frame.ssim_weighted_pred_err; |
| this_frame_intra_error = this_frame.intra_error; |
| this_frame_coded_error = this_frame.coded_error; |
| |
| // Store information regarding level of motion etc for use mode decisions. |
| cpi->motion_speed = (int)(fabs(this_frame.MVr) + fabs(this_frame.MVc)); |
| cpi->motion_var = (int)(fabs(this_frame.MVrv) + fabs(this_frame.MVcv)); |
| cpi->inter_lvl = (int)(this_frame.pcnt_inter * 100); |
| cpi->intra_lvl = (int)((1.0 - this_frame.pcnt_inter) * 100); |
| cpi->motion_lvl = (int)(this_frame.pcnt_motion * 100); |
| |
| start_pos = cpi->stats_in; |
| |
| // keyframe and section processing ! |
| if (cpi->frames_to_key == 0) |
| { |
| // Define next KF group and assign bits to it |
| vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| vp8_find_next_key_frame(cpi, &this_frame_copy); |
| |
| // Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop |
| // outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups. |
| // This is temporary code till we decide what should really happen in this case. |
| if (cpi->oxcf.error_resilient_mode) |
| { |
| cpi->gf_group_bits = cpi->kf_group_bits; |
| cpi->gf_group_error_left = cpi->kf_group_error_left; |
| cpi->baseline_gf_interval = cpi->frames_to_key; |
| cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; |
| cpi->source_alt_ref_pending = FALSE; |
| } |
| |
| } |
| |
| // Is this a GF / ARF (Note that a KF is always also a GF) |
| if (cpi->frames_till_gf_update_due == 0) |
| { |
| // Define next gf group and assign bits to it |
| vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| define_gf_group(cpi, &this_frame_copy); |
| |
| // If we are going to code an altref frame at the end of the group and the current frame is not a key frame.... |
| // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits |
| // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well |
| if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) |
| { |
| // Assign a standard frames worth of bits from those allocated to the GF group |
| vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| |
| // If appropriate (we are switching into ARF active but it was not previously active) apply a boost for the gf at the start of the group. |
| //if ( !cpi->source_alt_ref_active && (cpi->gfu_boost > 150) ) |
| if (FALSE) |
| { |
| int extra_bits; |
| int pct_extra = (cpi->gfu_boost - 100) / 50; |
| |
| pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
| |
| extra_bits = (cpi->gf_group_bits * pct_extra) / 100; |
| cpi->gf_group_bits -= extra_bits; |
| cpi->per_frame_bandwidth += extra_bits; |
| } |
| } |
| } |
| |
| // Otherwise this is an ordinary frame |
| else |
| { |
| // Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop |
| // outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups. |
| // This is temporary code till we decide what should really happen in this case. |
| if (cpi->oxcf.error_resilient_mode) |
| { |
| cpi->frames_till_gf_update_due = cpi->frames_to_key; |
| |
| if (cpi->common.frame_type != KEY_FRAME) |
| { |
| // Assign bits from those allocated to the GF group |
| vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| } |
| } |
| else |
| { |
| // Assign bits from those allocated to the GF group |
| vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| } |
| } |
| |
| // Keep a globally available copy of this and the next frame's iiratio. |
| cpi->this_iiratio = this_frame_intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame_coded_error); |
| { |
| FIRSTPASS_STATS next_frame; |
| if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) |
| { |
| cpi->next_iiratio = next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error); |
| } |
| } |
| |
| // Set nominal per second bandwidth for this frame |
| cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate; |
| if (cpi->target_bandwidth < 0) |
| cpi->target_bandwidth = 0; |
| |
| if (cpi->common.current_video_frame == 0) |
| { |
| // guess at 2nd pass q |
| cpi->est_max_qcorrection_factor = 1.0; |
| tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width); |
| |
| if (tmp_q < cpi->worst_quality) |
| { |
| cpi->active_worst_quality = tmp_q; |
| cpi->ni_av_qi = tmp_q; |
| } |
| else |
| { |
| cpi->active_worst_quality = cpi->worst_quality; |
| cpi->ni_av_qi = cpi->worst_quality; |
| } |
| } |
| else |
| { |
| if (frames_left < 1) |
| frames_left = 1; |
| |
| tmp_q = estimate_max_q(cpi, (cpi->total_coded_error_left / frames_left), (int)(cpi->bits_left / frames_left), cpi->common.Height, cpi->common.Width); |
| |
| // Move active_worst_quality but in a damped way |
| if (tmp_q > cpi->active_worst_quality) |
| cpi->active_worst_quality ++; |
| else if (tmp_q < cpi->active_worst_quality) |
| cpi->active_worst_quality --; |
| |
| cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; |
| |
| // Clamp to user set limits |
| if (cpi->active_worst_quality > cpi->worst_quality) |
| cpi->active_worst_quality = cpi->worst_quality; |
| else if (cpi->active_worst_quality < cpi->best_quality) |
| cpi->active_worst_quality = cpi->best_quality; |
| |
| } |
| |
| cpi->frames_to_key --; |
| cpi->total_error_left -= this_frame_error; |
| cpi->total_intra_error_left -= this_frame_intra_error; |
| cpi->total_coded_error_left -= this_frame_coded_error; |
| } |
| |
| |
| static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) |
| { |
| BOOL is_viable_kf = FALSE; |
| |
| // Does the frame satisfy the primary criteria of a key frame |
| // If so, then examine how well it predicts subsequent frames |
| if ((this_frame->pcnt_second_ref < 0.10) && |
| (next_frame->pcnt_second_ref < 0.10) && |
| ((this_frame->pcnt_inter < 0.05) || |
| ( |
| (this_frame->pcnt_inter < .25) && |
| ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || |
| ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) |
| ) |
| ) |
| ) |
| ) |
| { |
| int i; |
| FIRSTPASS_STATS *start_pos; |
| |
| FIRSTPASS_STATS local_next_frame; |
| |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| double next_iiratio; |
| |
| vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); |
| |
| // Note the starting file position so we can reset to it |
| start_pos = cpi->stats_in; |
| |
| // Examine how well the key frame predicts subsequent frames |
| for (i = 0 ; i < 16; i++) |
| { |
| next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; |
| |
| if (next_iiratio > RMAX) |
| next_iiratio = RMAX; |
| |
| // Cumulative effect of decay in prediction quality |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
| else |
| decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
| |
| //decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
| |
| // Keep a running total |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses |
| if ((local_next_frame.pcnt_inter < 0.05) || |
| (next_iiratio < 1.5) || |
| ((local_next_frame.pcnt_inter < 0.20) && (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 0.5) || |
| (local_next_frame.intra_error < 200) |
| ) |
| { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| // Get the next frame details |
| if (EOF == vp8_input_stats(cpi, &local_next_frame)) |
| break; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on |
| if (boost_score > 5.0 && (i > 3)) |
| is_viable_kf = TRUE; |
| else |
| { |
| // Reset the file position |
| reset_fpf_position(cpi, start_pos); |
| |
| is_viable_kf = FALSE; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| void vp8_find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) |
| { |
| int i; |
| FIRSTPASS_STATS last_frame; |
| FIRSTPASS_STATS first_frame; |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS *start_position; |
| |
| double decay_accumulator = 0; |
| double boost_score = 0; |
| double old_boost_score = 0.0; |
| double loop_decay_rate; |
| |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double kf_group_intra_err = 0.0; |
| double kf_group_coded_err = 0.0; |
| double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean |
| |
| vp8_clear_system_state(); //__asm emms; |
| start_position = cpi->stats_in; |
| |
| cpi->common.frame_type = KEY_FRAME; |
| |
| // Clear the alt ref active flag as this can never be active on a key frame |
| cpi->source_alt_ref_active = FALSE; |
| |
| // Kf is always a gf so clear frames till next gf counter |
| cpi->frames_till_gf_update_due = 0; |
| |
| cpi->frames_to_key = 1; |
| |
| // Take a copy of the initial frame details |
| vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); |
| |
| cpi->kf_group_bits = 0; // Total bits avaialable to kf group |
| cpi->kf_group_error_left = 0; // Group modified error score. |
| |
| kf_mod_err = calculate_modified_err(cpi, this_frame); |
| |
| // find the next keyframe |
| while (cpi->stats_in < cpi->stats_in_end) |
| { |
| // Accumulate kf group error |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| // These figures keep intra and coded error counts for all frames including key frames in the group. |
| // The effect of the key frame itself can be subtracted out using the first_frame data collected above |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| |
| // load a the next frame's stats |
| vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); |
| vp8_input_stats(cpi, this_frame); |
| |
| // Provided that we are not at the end of the file... |
| if (cpi->oxcf.auto_key |
| && lookup_next_frame_stats(cpi, &next_frame) != EOF) |
| { |
| if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) |
| break; |
| |
| // Step on to the next frame |
| cpi->frames_to_key ++; |
| |
| // If we don't have a real key frame within the next two |
| // forcekeyframeevery intervals then break out of the loop. |
| if (cpi->frames_to_key >= 2 *(int)cpi->key_frame_frequency) |
| break; |
| } else |
| cpi->frames_to_key ++; |
| } |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural |
| // interval is between 1x and 2x |
| if (cpi->oxcf.auto_key |
| && cpi->frames_to_key > (int)cpi->key_frame_frequency ) |
| { |
| cpi->frames_to_key /= 2; |
| |
| // Estimate corrected kf group error |
| kf_group_err /= 2.0; |
| kf_group_intra_err /= 2.0; |
| kf_group_coded_err /= 2.0; |
| } |
| |
| // Special case for the last frame of the file |
| if (cpi->stats_in >= cpi->stats_in_end) |
| { |
| // Accumulate kf group error |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| // These figures keep intra and coded error counts for all frames including key frames in the group. |
| // The effect of the key frame itself can be subtracted out using the first_frame data collected above |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if ((cpi->bits_left > 0) && ((int)cpi->modified_total_error_left > 0)) |
| { |
| // Max for a single normal frame (not key frame) |
| int max_bits = frame_max_bits(cpi); |
| |
| // Maximum bits for the kf group |
| long long max_grp_bits; |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section |
| cpi->kf_group_bits = (long long)( cpi->bits_left * |
| ( kf_group_err / |
| cpi->modified_total_error_left )); |
| |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (long long)max_bits * (long long)cpi->frames_to_key; |
| if (cpi->kf_group_bits > max_grp_bits) |
| cpi->kf_group_bits = max_grp_bits; |
| |
| // Additional special case for CBR if buffer is getting full. |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; |
| int buffer_lvl = cpi->buffer_level; |
| |
| // If the buffer is near or above the optimal and this kf group is |
| // not being allocated much then increase the allocation a bit. |
| if (buffer_lvl >= opt_buffer_lvl) |
| { |
| int high_water_mark = (opt_buffer_lvl + |
| cpi->oxcf.maximum_buffer_size) >> 1; |
| |
| long long av_group_bits; |
| |
| // Av bits per frame * number of frames |
| av_group_bits = (long long)cpi->av_per_frame_bandwidth * |
| (long long)cpi->frames_to_key; |
| |
| // We are at or above the maximum. |
| if (cpi->buffer_level >= high_water_mark) |
| { |
| long long min_group_bits; |
| |
| min_group_bits = av_group_bits + |
| (long long)(buffer_lvl - |
| high_water_mark); |
| |
| if (cpi->kf_group_bits < min_group_bits) |
| cpi->kf_group_bits = min_group_bits; |
| } |
| // We are above optimal but below the maximum |
| else if (cpi->kf_group_bits < av_group_bits) |
| { |
| long long bits_below_av = av_group_bits - |
| cpi->kf_group_bits; |
| |
| cpi->kf_group_bits += |
| (long long)((double)bits_below_av * |
| (double)(buffer_lvl - opt_buffer_lvl) / |
| (double)(high_water_mark - opt_buffer_lvl)); |
| } |
| } |
| } |
| } |
| else |
| cpi->kf_group_bits = 0; |
| |
| // Reset the first pass file position |
| reset_fpf_position(cpi, start_position); |
| |
| // determine how big to make this keyframe based on how well the subsequent frames use inter blocks |
| decay_accumulator = 1.0; |
| boost_score = 0.0; |
| loop_decay_rate = 1.00; // Starting decay rate |
| |
| for (i = 0 ; i < cpi->frames_to_key ; i++) |
| { |
| double r; |
| |
| if (EOF == vp8_input_stats(cpi, &next_frame)) |
| break; |
| |
| r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)) ; |
| |
| if (r > RMAX) |
| r = RMAX; |
| |
| // Adjust loop decay rate |
| //if ( next_frame.pcnt_inter < loop_decay_rate ) |
| loop_decay_rate = next_frame.pcnt_inter; |
| |
| if ((1.0 - (next_frame.pcnt_motion / 10.0)) < loop_decay_rate) |
| loop_decay_rate = (1.0 - (next_frame.pcnt_motion / 10.0)); |
| |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| |
| boost_score += (decay_accumulator * r); |
| |
| if ((i > MIN_GF_INTERVAL) && |
| ((boost_score - old_boost_score) < 1.0)) |
| { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| } |
| |
| if (1) |
| { |
| FIRSTPASS_STATS sectionstats; |
| double Ratio; |
| |
| vp8_zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_position); |
| |
| for (i = 0 ; i < cpi->frames_to_key ; i++) |
| { |
| vp8_input_stats(cpi, &next_frame); |
| vp8_accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| vp8_avg_stats(§ionstats); |
| |
| if (sectionstats.pcnt_motion < .17) |
| cpi->section_is_low_motion = 1; |
| else |
| cpi->section_is_low_motion = 0; |
| |
| if (sectionstats.mvc_abs + sectionstats.mvr_abs > 45) |
| cpi->section_is_fast_motion = 1; |
| else |
| cpi->section_is_fast_motion = 0; |
| |
| cpi->section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| |
| Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); |
| // if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) |
| //{ |
| cpi->section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); |
| |
| if (cpi->section_max_qfactor < 0.80) |
| cpi->section_max_qfactor = 0.80; |
| |
| //} |
| //else |
| // cpi->section_max_qfactor = 1.0; |
| } |
| |
| // When using CBR apply additional buffer fullness related upper limits |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| double max_boost; |
| |
| if (cpi->drop_frames_allowed) |
| { |
| int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100); |
| |
| if (cpi->buffer_level > df_buffer_level) |
| max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| else |
| max_boost = 0.0; |
| } |
| else if (cpi->buffer_level > 0) |
| { |
| max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); |
| } |
| else |
| { |
| max_boost = 0.0; |
| } |
| |
| if (boost_score > max_boost) |
| boost_score = max_boost; |
| } |
| |
| // Reset the first pass file position |
| reset_fpf_position(cpi, start_position); |
| |
| // Work out how many bits to allocate for the key frame itself |
| if (1) |
| { |
| int kf_boost = boost_score; |
| int allocation_chunks; |
| int Counter = cpi->frames_to_key; |
| int alt_kf_bits; |
| YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; |
| // Min boost based on kf interval |
| #if 0 |
| |
| while ((kf_boost < 48) && (Counter > 0)) |
| { |
| Counter -= 2; |
| kf_boost ++; |
| } |
| |
| #endif |
| |
| if (kf_boost < 48) |
| { |
| kf_boost += ((Counter + 1) >> 1); |
| |
| if (kf_boost > 48) kf_boost = 48; |
| } |
| |
| // bigger frame sizes need larger kf boosts, smaller frames smaller boosts... |
| if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) |
| kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); |
| else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) |
| kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); |
| |
| kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100 |
| |
| // Adjustment to boost based on recent average q |
| kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100; |
| |
| if (kf_boost < 250) // Min KF boost |
| kf_boost = 250; |
| |
| // We do three calculations for kf size. |
| // The first is based on the error score for the whole kf group. |
| // The second (optionaly) on the key frames own error if this is smaller than the average for the group. |
| // The final one insures that the frame receives at least the allocation it would have received based on its own error score vs the error score remaining |
| |
| allocation_chunks = ((cpi->frames_to_key - 1) * 100) + kf_boost; // cpi->frames_to_key-1 because key frame itself is taken care of by kf_boost |
| |
| // Normalize Altboost and allocations chunck down to prevent overflow |
| while (kf_boost > 1000) |
| { |
| kf_boost /= 2; |
| allocation_chunks /= 2; |
| } |
| |
| cpi->kf_group_bits = (cpi->kf_group_bits < 0) ? 0 : cpi->kf_group_bits; |
| |
| // Calculate the number of bits to be spent on the key frame |
| cpi->kf_bits = (int)((double)kf_boost * ((double)cpi->kf_group_bits / (double)allocation_chunks)); |
| |
| // Apply an additional limit for CBR |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| if (cpi->kf_bits > ((3 * cpi->buffer_level) >> 2)) |
| cpi->kf_bits = (3 * cpi->buffer_level) >> 2; |
| } |
| |
| // If the key frame is actually easier than the average for the |
| // kf group (which does sometimes happen... eg a blank intro frame) |
| // Then use an alternate calculation based on the kf error score |
| // which should give a smaller key frame. |
| if (kf_mod_err < kf_group_err / cpi->frames_to_key) |
| { |
| double alt_kf_grp_bits = |
| ((double)cpi->bits_left * |
| (kf_mod_err * (double)cpi->frames_to_key) / |
| DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left)); |
| |
| alt_kf_bits = (int)((double)kf_boost * |
| (alt_kf_grp_bits / (double)allocation_chunks)); |
| |
| if (cpi->kf_bits > alt_kf_bits) |
| { |
| cpi->kf_bits = alt_kf_bits; |
| } |
| } |
| // Else if it is much harder than other frames in the group make sure |
| // it at least receives an allocation in keeping with its relative |
| // error score |
| else |
| { |
| alt_kf_bits = |
| (int)((double)cpi->bits_left * |
| (kf_mod_err / |
| DOUBLE_DIVIDE_CHECK(cpi->modified_total_error_left))); |
| |
| if (alt_kf_bits > cpi->kf_bits) |
| { |
| cpi->kf_bits = alt_kf_bits; |
| } |
| } |
| |
| cpi->kf_group_bits -= cpi->kf_bits; |
| cpi->kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance |
| |
| cpi->per_frame_bandwidth = cpi->kf_bits; // Peer frame bit target for this frame |
| cpi->target_bandwidth = cpi->kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate |
| } |
| |
| // Note the total error score of the kf group minus the key frame itself |
| cpi->kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame sizes |
| cpi->modified_total_error_left -= kf_group_err; |
| |
| if (cpi->oxcf.allow_spatial_resampling) |
| { |
| int resample_trigger = FALSE; |
| int last_kf_resampled = FALSE; |
| int kf_q; |
| int scale_val = 0; |
| int hr, hs, vr, vs; |
| int new_width = cpi->oxcf.Width; |
| int new_height = cpi->oxcf.Height; |
| |
| int projected_buffer_level = cpi->buffer_level; |
| int tmp_q; |
| |
| double projected_bits_perframe; |
| double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); |
| double err_per_frame = kf_group_err / cpi->frames_to_key; |
| double bits_per_frame; |
| double av_bits_per_frame; |
| double effective_size_ratio; |
| |
| if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) |
| last_kf_resampled = TRUE; |
| |
| // Set back to unscaled by defaults |
| cpi->common.horiz_scale = NORMAL; |
| cpi->common.vert_scale = NORMAL; |
| |
| // Calculate Average bits per frame. |
| //av_bits_per_frame = cpi->bits_left/(double)(cpi->total_stats.count - cpi->common.current_video_frame); |
| av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate); |
| //if ( av_bits_per_frame < 0.0 ) |
| // av_bits_per_frame = 0.0 |
| |
| // CBR... Use the clip average as the target for deciding resample |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| bits_per_frame = av_bits_per_frame; |
| } |
| |
| // In VBR we want to avoid downsampling in easy section unless we are under extreme pressure |
| // So use the larger of target bitrate for this sectoion or average bitrate for sequence |
| else |
| { |
| bits_per_frame = cpi->kf_group_bits / cpi->frames_to_key; // This accounts for how hard the section is... |
| |
| if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits |
| bits_per_frame = av_bits_per_frame; |
| } |
| |
| // bits_per_frame should comply with our minimum |
| if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) |
| bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); |
| |
| // Work out if spatial resampling is necessary |
| kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, new_height, new_width, group_iiratio); |
| |
| // If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section |
| projected_bits_perframe = bits_per_frame; |
| tmp_q = kf_q; |
| |
| while (tmp_q > cpi->worst_quality) |
| { |
| projected_bits_perframe *= 1.04; |
| tmp_q--; |
| } |
| |
| // Guess at buffer level at the end of the section |
| projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->frames_to_key); |
| |
| if (0) |
| { |
| FILE *f = fopen("Subsamle.stt", "a"); |
| fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, cpi->kf_group_bits / cpi->frames_to_key, new_height, new_width); |
| fclose(f); |
| } |
| |
| // The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR. |
| if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) |
| { |
| // Trigger resample if we are projected to fall below down sample level or |
| // resampled last time and are projected to remain below the up sample level |
| if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || |
| (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) |
| //( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) && |
| // ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) )) |
| resample_trigger = TRUE; |
| else |
| resample_trigger = FALSE; |
| } |
| else |
| { |
| long long clip_bits = (long long)(cpi->total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.frame_rate)); |
| long long over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; |
| long long over_spend2 = cpi->oxcf.starting_buffer_level - projected_buffer_level; |
| |
| if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced |
| ((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ... |
| (over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits |
| resample_trigger = TRUE; |
| else |
| resample_trigger = FALSE; |
| |
| } |
| |
| if (resample_trigger) |
| { |
| while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) |
| { |
| scale_val ++; |
| |
| cpi->common.vert_scale = vscale_lookup[scale_val]; |
| cpi->common.horiz_scale = hscale_lookup[scale_val]; |
| |
| Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); |
| Scale2Ratio(cpi->common.vert_scale, &vr, &vs); |
| |
| new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; |
| new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; |
| |
| // Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4... |
| // effective_sizeratio attempts to provide a crude correction for this |
| effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); |
| effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; |
| |
| // Now try again and see what Q we get with the smaller image size |
| kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, new_height, new_width, group_iiratio); |
| |
| if (0) |
| { |
| FILE *f = fopen("Subsamle.stt", "a"); |
| fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->frames_to_key, cpi->kf_group_bits / cpi->frames_to_key, new_height, new_width); |
| fclose(f); |
| } |
| } |
| } |
| |
| if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) |
| { |
| cpi->common.Width = new_width; |
| cpi->common.Height = new_height; |
| vp8_alloc_compressor_data(cpi); |
| } |
| } |
| } |