| //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// \brief Custom DAG lowering for SI |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SIISelLowering.h" |
| #include "AMDIL.h" |
| #include "AMDGPU.h" |
| #include "AMDILIntrinsicInfo.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "SIRegisterInfo.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| |
| using namespace llvm; |
| |
| SITargetLowering::SITargetLowering(TargetMachine &TM) : |
| AMDGPUTargetLowering(TM), |
| TII(static_cast<const SIInstrInfo*>(TM.getInstrInfo())), |
| TRI(TM.getRegisterInfo()) { |
| |
| addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass); |
| addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); |
| |
| addRegisterClass(MVT::v16i8, &AMDGPU::SReg_128RegClass); |
| addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); |
| addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); |
| |
| addRegisterClass(MVT::i32, &AMDGPU::VReg_32RegClass); |
| addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass); |
| |
| addRegisterClass(MVT::v1i32, &AMDGPU::VReg_32RegClass); |
| |
| addRegisterClass(MVT::v2i32, &AMDGPU::VReg_64RegClass); |
| addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); |
| |
| addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass); |
| addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); |
| |
| addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass); |
| addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); |
| |
| addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass); |
| addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); |
| |
| computeRegisterProperties(); |
| |
| setOperationAction(ISD::ADD, MVT::i64, Legal); |
| setOperationAction(ISD::ADD, MVT::i32, Legal); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| |
| setTargetDAGCombine(ISD::SETCC); |
| |
| setSchedulingPreference(Sched::Source); |
| } |
| |
| SDValue SITargetLowering::LowerFormalArguments( |
| SDValue Chain, |
| CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc DL, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| FunctionType *FType = MF.getFunction()->getFunctionType(); |
| SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); |
| |
| assert(CallConv == CallingConv::C); |
| |
| SmallVector<ISD::InputArg, 16> Splits; |
| uint32_t Skipped = 0; |
| |
| for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { |
| const ISD::InputArg &Arg = Ins[i]; |
| |
| // First check if it's a PS input addr |
| if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg()) { |
| |
| assert((PSInputNum <= 15) && "Too many PS inputs!"); |
| |
| if (!Arg.Used) { |
| // We can savely skip PS inputs |
| Skipped |= 1 << i; |
| ++PSInputNum; |
| continue; |
| } |
| |
| Info->PSInputAddr |= 1 << PSInputNum++; |
| } |
| |
| // Second split vertices into their elements |
| if (Arg.VT.isVector()) { |
| ISD::InputArg NewArg = Arg; |
| NewArg.Flags.setSplit(); |
| NewArg.VT = Arg.VT.getVectorElementType(); |
| |
| // We REALLY want the ORIGINAL number of vertex elements here, e.g. a |
| // three or five element vertex only needs three or five registers, |
| // NOT four or eigth. |
| Type *ParamType = FType->getParamType(Arg.OrigArgIndex); |
| unsigned NumElements = ParamType->getVectorNumElements(); |
| |
| for (unsigned j = 0; j != NumElements; ++j) { |
| Splits.push_back(NewArg); |
| NewArg.PartOffset += NewArg.VT.getStoreSize(); |
| } |
| |
| } else { |
| Splits.push_back(Arg); |
| } |
| } |
| |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| // At least one interpolation mode must be enabled or else the GPU will hang. |
| if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) { |
| Info->PSInputAddr |= 1; |
| CCInfo.AllocateReg(AMDGPU::VGPR0); |
| CCInfo.AllocateReg(AMDGPU::VGPR1); |
| } |
| |
| AnalyzeFormalArguments(CCInfo, Splits); |
| |
| for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { |
| |
| if (Skipped & (1 << i)) { |
| InVals.push_back(SDValue()); |
| continue; |
| } |
| |
| CCValAssign &VA = ArgLocs[ArgIdx++]; |
| assert(VA.isRegLoc() && "Parameter must be in a register!"); |
| |
| unsigned Reg = VA.getLocReg(); |
| MVT VT = VA.getLocVT(); |
| |
| if (VT == MVT::i64) { |
| // For now assume it is a pointer |
| Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, |
| &AMDGPU::SReg_64RegClass); |
| Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); |
| InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); |
| continue; |
| } |
| |
| const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); |
| |
| Reg = MF.addLiveIn(Reg, RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); |
| |
| const ISD::InputArg &Arg = Ins[i]; |
| if (Arg.VT.isVector()) { |
| |
| // Build a vector from the registers |
| Type *ParamType = FType->getParamType(Arg.OrigArgIndex); |
| unsigned NumElements = ParamType->getVectorNumElements(); |
| |
| SmallVector<SDValue, 4> Regs; |
| Regs.push_back(Val); |
| for (unsigned j = 1; j != NumElements; ++j) { |
| Reg = ArgLocs[ArgIdx++].getLocReg(); |
| Reg = MF.addLiveIn(Reg, RC); |
| Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); |
| } |
| |
| // Fill up the missing vector elements |
| NumElements = Arg.VT.getVectorNumElements() - NumElements; |
| for (unsigned j = 0; j != NumElements; ++j) |
| Regs.push_back(DAG.getUNDEF(VT)); |
| |
| InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, |
| Regs.data(), Regs.size())); |
| continue; |
| } |
| |
| InVals.push_back(Val); |
| } |
| return Chain; |
| } |
| |
| MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( |
| MachineInstr * MI, MachineBasicBlock * BB) const { |
| MachineRegisterInfo & MRI = BB->getParent()->getRegInfo(); |
| MachineBasicBlock::iterator I = MI; |
| |
| switch (MI->getOpcode()) { |
| default: |
| return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); |
| case AMDGPU::BRANCH: return BB; |
| case AMDGPU::SI_WQM: |
| LowerSI_WQM(MI, *BB, I, MRI); |
| break; |
| } |
| return BB; |
| } |
| |
| void SITargetLowering::LowerSI_WQM(MachineInstr *MI, MachineBasicBlock &BB, |
| MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const { |
| BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_WQM_B64), AMDGPU::EXEC) |
| .addReg(AMDGPU::EXEC); |
| |
| MI->eraseFromParent(); |
| } |
| |
| EVT SITargetLowering::getSetCCResultType(EVT VT) const { |
| return MVT::i1; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG Lowering Operations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| /// \brief Helper function for LowerBRCOND |
| static SDNode *findUser(SDValue Value, unsigned Opcode) { |
| |
| SDNode *Parent = Value.getNode(); |
| for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); |
| I != E; ++I) { |
| |
| if (I.getUse().get() != Value) |
| continue; |
| |
| if (I->getOpcode() == Opcode) |
| return *I; |
| } |
| return 0; |
| } |
| |
| /// This transforms the control flow intrinsics to get the branch destination as |
| /// last parameter, also switches branch target with BR if the need arise |
| SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, |
| SelectionDAG &DAG) const { |
| |
| DebugLoc DL = BRCOND.getDebugLoc(); |
| |
| SDNode *Intr = BRCOND.getOperand(1).getNode(); |
| SDValue Target = BRCOND.getOperand(2); |
| SDNode *BR = 0; |
| |
| if (Intr->getOpcode() == ISD::SETCC) { |
| // As long as we negate the condition everything is fine |
| SDNode *SetCC = Intr; |
| assert(SetCC->getConstantOperandVal(1) == 1); |
| assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == |
| ISD::SETNE); |
| Intr = SetCC->getOperand(0).getNode(); |
| |
| } else { |
| // Get the target from BR if we don't negate the condition |
| BR = findUser(BRCOND, ISD::BR); |
| Target = BR->getOperand(1); |
| } |
| |
| assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); |
| |
| // Build the result and |
| SmallVector<EVT, 4> Res; |
| for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i) |
| Res.push_back(Intr->getValueType(i)); |
| |
| // operands of the new intrinsic call |
| SmallVector<SDValue, 4> Ops; |
| Ops.push_back(BRCOND.getOperand(0)); |
| for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i) |
| Ops.push_back(Intr->getOperand(i)); |
| Ops.push_back(Target); |
| |
| // build the new intrinsic call |
| SDNode *Result = DAG.getNode( |
| Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, |
| DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode(); |
| |
| if (BR) { |
| // Give the branch instruction our target |
| SDValue Ops[] = { |
| BR->getOperand(0), |
| BRCOND.getOperand(2) |
| }; |
| DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2); |
| } |
| |
| SDValue Chain = SDValue(Result, Result->getNumValues() - 1); |
| |
| // Copy the intrinsic results to registers |
| for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { |
| SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); |
| if (!CopyToReg) |
| continue; |
| |
| Chain = DAG.getCopyToReg( |
| Chain, DL, |
| CopyToReg->getOperand(1), |
| SDValue(Result, i - 1), |
| SDValue()); |
| |
| DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); |
| } |
| |
| // Remove the old intrinsic from the chain |
| DAG.ReplaceAllUsesOfValueWith( |
| SDValue(Intr, Intr->getNumValues() - 1), |
| Intr->getOperand(0)); |
| |
| return Chain; |
| } |
| |
| SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue True = Op.getOperand(2); |
| SDValue False = Op.getOperand(3); |
| SDValue CC = Op.getOperand(4); |
| EVT VT = Op.getValueType(); |
| DebugLoc DL = Op.getDebugLoc(); |
| |
| // Possible Min/Max pattern |
| SDValue MinMax = LowerMinMax(Op, DAG); |
| if (MinMax.getNode()) { |
| return MinMax; |
| } |
| |
| SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC); |
| return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG optimizations |
| //===----------------------------------------------------------------------===// |
| |
| SDValue SITargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| DebugLoc DL = N->getDebugLoc(); |
| EVT VT = N->getValueType(0); |
| |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::SELECT_CC: { |
| N->dump(); |
| ConstantSDNode *True, *False; |
| // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc) |
| if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2))) |
| && (False = dyn_cast<ConstantSDNode>(N->getOperand(3))) |
| && True->isAllOnesValue() |
| && False->isNullValue() |
| && VT == MVT::i1) { |
| return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0), |
| N->getOperand(1), N->getOperand(4)); |
| |
| } |
| break; |
| } |
| case ISD::SETCC: { |
| SDValue Arg0 = N->getOperand(0); |
| SDValue Arg1 = N->getOperand(1); |
| SDValue CC = N->getOperand(2); |
| ConstantSDNode * C = NULL; |
| ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get(); |
| |
| // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne) |
| if (VT == MVT::i1 |
| && Arg0.getOpcode() == ISD::SIGN_EXTEND |
| && Arg0.getOperand(0).getValueType() == MVT::i1 |
| && (C = dyn_cast<ConstantSDNode>(Arg1)) |
| && C->isNullValue() |
| && CCOp == ISD::SETNE) { |
| return SimplifySetCC(VT, Arg0.getOperand(0), |
| DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL); |
| } |
| break; |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// \brief Test if RegClass is one of the VSrc classes |
| static bool isVSrc(unsigned RegClass) { |
| return AMDGPU::VSrc_32RegClassID == RegClass || |
| AMDGPU::VSrc_64RegClassID == RegClass; |
| } |
| |
| /// \brief Test if RegClass is one of the SSrc classes |
| static bool isSSrc(unsigned RegClass) { |
| return AMDGPU::SSrc_32RegClassID == RegClass || |
| AMDGPU::SSrc_64RegClassID == RegClass; |
| } |
| |
| /// \brief Analyze the possible immediate value Op |
| /// |
| /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate |
| /// and the immediate value if it's a literal immediate |
| int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { |
| |
| union { |
| int32_t I; |
| float F; |
| } Imm; |
| |
| if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) |
| Imm.I = Node->getSExtValue(); |
| else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) |
| Imm.F = Node->getValueAPF().convertToFloat(); |
| else |
| return -1; // It isn't an immediate |
| |
| if ((Imm.I >= -16 && Imm.I <= 64) || |
| Imm.F == 0.5f || Imm.F == -0.5f || |
| Imm.F == 1.0f || Imm.F == -1.0f || |
| Imm.F == 2.0f || Imm.F == -2.0f || |
| Imm.F == 4.0f || Imm.F == -4.0f) |
| return 0; // It's an inline immediate |
| |
| return Imm.I; // It's a literal immediate |
| } |
| |
| /// \brief Try to fold an immediate directly into an instruction |
| bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate, |
| bool &ScalarSlotUsed) const { |
| |
| MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand); |
| if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode())) |
| return false; |
| |
| const SDValue &Op = Mov->getOperand(0); |
| int32_t Value = analyzeImmediate(Op.getNode()); |
| if (Value == -1) { |
| // Not an immediate at all |
| return false; |
| |
| } else if (Value == 0) { |
| // Inline immediates can always be fold |
| Operand = Op; |
| return true; |
| |
| } else if (Value == Immediate) { |
| // Already fold literal immediate |
| Operand = Op; |
| return true; |
| |
| } else if (!ScalarSlotUsed && !Immediate) { |
| // Fold this literal immediate |
| ScalarSlotUsed = true; |
| Immediate = Value; |
| Operand = Op; |
| return true; |
| |
| } |
| |
| return false; |
| } |
| |
| /// \brief Does "Op" fit into register class "RegClass" ? |
| bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, SDValue &Op, |
| unsigned RegClass) const { |
| |
| MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); |
| SDNode *Node = Op.getNode(); |
| |
| int OpClass; |
| if (MachineSDNode *MN = dyn_cast<MachineSDNode>(Node)) { |
| const MCInstrDesc &Desc = TII->get(MN->getMachineOpcode()); |
| OpClass = Desc.OpInfo[Op.getResNo()].RegClass; |
| |
| } else if (Node->getOpcode() == ISD::CopyFromReg) { |
| RegisterSDNode *Reg = cast<RegisterSDNode>(Node->getOperand(1).getNode()); |
| OpClass = MRI.getRegClass(Reg->getReg())->getID(); |
| |
| } else |
| return false; |
| |
| if (OpClass == -1) |
| return false; |
| |
| return TRI->getRegClass(RegClass)->hasSubClassEq(TRI->getRegClass(OpClass)); |
| } |
| |
| /// \brief Make sure that we don't exeed the number of allowed scalars |
| void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand, |
| unsigned RegClass, |
| bool &ScalarSlotUsed) const { |
| |
| // First map the operands register class to a destination class |
| if (RegClass == AMDGPU::VSrc_32RegClassID) |
| RegClass = AMDGPU::VReg_32RegClassID; |
| else if (RegClass == AMDGPU::VSrc_64RegClassID) |
| RegClass = AMDGPU::VReg_64RegClassID; |
| else |
| return; |
| |
| // Nothing todo if they fit naturaly |
| if (fitsRegClass(DAG, Operand, RegClass)) |
| return; |
| |
| // If the scalar slot isn't used yet use it now |
| if (!ScalarSlotUsed) { |
| ScalarSlotUsed = true; |
| return; |
| } |
| |
| // This is a conservative aproach, it is possible that we can't determine |
| // the correct register class and copy too often, but better save than sorry. |
| SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32); |
| SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DebugLoc(), |
| Operand.getValueType(), Operand, RC); |
| Operand = SDValue(Node, 0); |
| } |
| |
| SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, |
| SelectionDAG &DAG) const { |
| |
| // Original encoding (either e32 or e64) |
| int Opcode = Node->getMachineOpcode(); |
| const MCInstrDesc *Desc = &TII->get(Opcode); |
| |
| unsigned NumDefs = Desc->getNumDefs(); |
| unsigned NumOps = Desc->getNumOperands(); |
| |
| // e64 version if available, -1 otherwise |
| int OpcodeE64 = AMDGPU::getVOPe64(Opcode); |
| const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64); |
| |
| assert(!DescE64 || DescE64->getNumDefs() == NumDefs); |
| assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4)); |
| |
| int32_t Immediate = Desc->getSize() == 4 ? 0 : -1; |
| bool HaveVSrc = false, HaveSSrc = false; |
| |
| // First figure out what we alread have in this instruction |
| for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; |
| i != e && Op < NumOps; ++i, ++Op) { |
| |
| unsigned RegClass = Desc->OpInfo[Op].RegClass; |
| if (isVSrc(RegClass)) |
| HaveVSrc = true; |
| else if (isSSrc(RegClass)) |
| HaveSSrc = true; |
| else |
| continue; |
| |
| int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode()); |
| if (Imm != -1 && Imm != 0) { |
| // Literal immediate |
| Immediate = Imm; |
| } |
| } |
| |
| // If we neither have VSrc nor SSrc it makes no sense to continue |
| if (!HaveVSrc && !HaveSSrc) |
| return Node; |
| |
| // No scalar allowed when we have both VSrc and SSrc |
| bool ScalarSlotUsed = HaveVSrc && HaveSSrc; |
| |
| // Second go over the operands and try to fold them |
| std::vector<SDValue> Ops; |
| bool Promote2e64 = false; |
| for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; |
| i != e && Op < NumOps; ++i, ++Op) { |
| |
| const SDValue &Operand = Node->getOperand(i); |
| Ops.push_back(Operand); |
| |
| // Already folded immediate ? |
| if (isa<ConstantSDNode>(Operand.getNode()) || |
| isa<ConstantFPSDNode>(Operand.getNode())) |
| continue; |
| |
| // Is this a VSrc or SSrc operand ? |
| unsigned RegClass = Desc->OpInfo[Op].RegClass; |
| if (!isVSrc(RegClass) && !isSSrc(RegClass)) { |
| |
| if (i == 1 && Desc->isCommutable() && |
| fitsRegClass(DAG, Ops[0], RegClass) && |
| foldImm(Ops[1], Immediate, ScalarSlotUsed)) { |
| |
| assert(isVSrc(Desc->OpInfo[NumDefs].RegClass) || |
| isSSrc(Desc->OpInfo[NumDefs].RegClass)); |
| |
| // Swap commutable operands |
| SDValue Tmp = Ops[1]; |
| Ops[1] = Ops[0]; |
| Ops[0] = Tmp; |
| |
| } else if (DescE64 && !Immediate) { |
| // Test if it makes sense to switch to e64 encoding |
| |
| RegClass = DescE64->OpInfo[Op].RegClass; |
| int32_t TmpImm = -1; |
| if ((isVSrc(RegClass) || isSSrc(RegClass)) && |
| foldImm(Ops[i], TmpImm, ScalarSlotUsed)) { |
| |
| Immediate = -1; |
| Promote2e64 = true; |
| Desc = DescE64; |
| DescE64 = 0; |
| } |
| } |
| continue; |
| } |
| |
| // Try to fold the immediates |
| if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) { |
| // Folding didn't worked, make sure we don't hit the SReg limit |
| ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed); |
| } |
| } |
| |
| if (Promote2e64) { |
| // Add the modifier flags while promoting |
| for (unsigned i = 0; i < 4; ++i) |
| Ops.push_back(DAG.getTargetConstant(0, MVT::i32)); |
| } |
| |
| // Add optional chain and glue |
| for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i) |
| Ops.push_back(Node->getOperand(i)); |
| |
| // Either create a complete new or update the current instruction |
| if (Promote2e64) |
| return DAG.getMachineNode(OpcodeE64, Node->getDebugLoc(), |
| Node->getVTList(), Ops.data(), Ops.size()); |
| else |
| return DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size()); |
| } |