| //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs loop invariant code motion, attempting to remove as much |
| // code from the body of a loop as possible. It does this by either hoisting |
| // code into the preheader block, or by sinking code to the exit blocks if it is |
| // safe. This pass also promotes must-aliased memory locations in the loop to |
| // live in registers, thus hoisting and sinking "invariant" loads and stores. |
| // |
| // This pass uses alias analysis for two purposes: |
| // |
| // 1. Moving loop invariant loads and calls out of loops. If we can determine |
| // that a load or call inside of a loop never aliases anything stored to, |
| // we can hoist it or sink it like any other instruction. |
| // 2. Scalar Promotion of Memory - If there is a store instruction inside of |
| // the loop, we try to move the store to happen AFTER the loop instead of |
| // inside of the loop. This can only happen if a few conditions are true: |
| // A. The pointer stored through is loop invariant |
| // B. There are no stores or loads in the loop which _may_ alias the |
| // pointer. There are no calls in the loop which mod/ref the pointer. |
| // If these conditions are true, we can promote the loads and stores in the |
| // loop of the pointer to use a temporary alloca'd variable. We then use |
| // the mem2reg functionality to construct the appropriate SSA form for the |
| // variable. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "licm" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AliasSetTracker.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| STATISTIC(NumSunk , "Number of instructions sunk out of loop"); |
| STATISTIC(NumHoisted , "Number of instructions hoisted out of loop"); |
| STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); |
| STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); |
| STATISTIC(NumPromoted , "Number of memory locations promoted to registers"); |
| |
| static cl::opt<bool> |
| DisablePromotion("disable-licm-promotion", cl::Hidden, |
| cl::desc("Disable memory promotion in LICM pass")); |
| |
| // This feature is currently disabled by default because CodeGen is not yet |
| // capable of rematerializing these constants in PIC mode, so it can lead to |
| // degraded performance. Compile test/CodeGen/X86/remat-constant.ll with |
| // -relocation-model=pic to see an example of this. |
| static cl::opt<bool> |
| EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden, |
| cl::desc("Enable hoisting/sinking of constant " |
| "global variables")); |
| |
| namespace { |
| struct VISIBILITY_HIDDEN LICM : public LoopPass { |
| static char ID; // Pass identification, replacement for typeid |
| LICM() : LoopPass(&ID) {} |
| |
| virtual bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| /// This transformation requires natural loop information & requires that |
| /// loop preheaders be inserted into the CFG... |
| /// |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addRequired<LoopInfo>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg) |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreserved<DominanceFrontier>(); |
| } |
| |
| bool doFinalization() { |
| // Free the values stored in the map |
| for (std::map<Loop *, AliasSetTracker *>::iterator |
| I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I) |
| delete I->second; |
| |
| LoopToAliasMap.clear(); |
| return false; |
| } |
| |
| private: |
| // Various analyses that we use... |
| AliasAnalysis *AA; // Current AliasAnalysis information |
| LoopInfo *LI; // Current LoopInfo |
| DominatorTree *DT; // Dominator Tree for the current Loop... |
| DominanceFrontier *DF; // Current Dominance Frontier |
| |
| // State that is updated as we process loops |
| bool Changed; // Set to true when we change anything. |
| BasicBlock *Preheader; // The preheader block of the current loop... |
| Loop *CurLoop; // The current loop we are working on... |
| AliasSetTracker *CurAST; // AliasSet information for the current loop... |
| std::map<Loop *, AliasSetTracker *> LoopToAliasMap; |
| |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. |
| void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L); |
| |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias |
| /// set. |
| void deleteAnalysisValue(Value *V, Loop *L); |
| |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in |
| /// reverse depth first order w.r.t the DominatorTree. This allows us to |
| /// visit uses before definitions, allowing us to sink a loop body in one |
| /// pass without iteration. |
| /// |
| void SinkRegion(DomTreeNode *N); |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all |
| /// blocks dominated by the specified block, and that are in the current |
| /// loop) in depth first order w.r.t the DominatorTree. This allows us to |
| /// visit definitions before uses, allowing us to hoist a loop body in one |
| /// pass without iteration. |
| /// |
| void HoistRegion(DomTreeNode *N); |
| |
| /// inSubLoop - Little predicate that returns true if the specified basic |
| /// block is in a subloop of the current one, not the current one itself. |
| /// |
| bool inSubLoop(BasicBlock *BB) { |
| assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); |
| for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I) |
| if ((*I)->contains(BB)) |
| return true; // A subloop actually contains this block! |
| return false; |
| } |
| |
| /// isExitBlockDominatedByBlockInLoop - This method checks to see if the |
| /// specified exit block of the loop is dominated by the specified block |
| /// that is in the body of the loop. We use these constraints to |
| /// dramatically limit the amount of the dominator tree that needs to be |
| /// searched. |
| bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock, |
| BasicBlock *BlockInLoop) const { |
| // If the block in the loop is the loop header, it must be dominated! |
| BasicBlock *LoopHeader = CurLoop->getHeader(); |
| if (BlockInLoop == LoopHeader) |
| return true; |
| |
| DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop); |
| DomTreeNode *IDom = DT->getNode(ExitBlock); |
| |
| // Because the exit block is not in the loop, we know we have to get _at |
| // least_ its immediate dominator. |
| do { |
| // Get next Immediate Dominator. |
| IDom = IDom->getIDom(); |
| |
| // If we have got to the header of the loop, then the instructions block |
| // did not dominate the exit node, so we can't hoist it. |
| if (IDom->getBlock() == LoopHeader) |
| return false; |
| |
| } while (IDom != BlockInLoopNode); |
| |
| return true; |
| } |
| |
| /// sink - When an instruction is found to only be used outside of the loop, |
| /// this function moves it to the exit blocks and patches up SSA form as |
| /// needed. |
| /// |
| void sink(Instruction &I); |
| |
| /// hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void hoist(Instruction &I); |
| |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it |
| /// is not a trapping instruction or if it is a trapping instruction and is |
| /// guaranteed to execute. |
| /// |
| bool isSafeToExecuteUnconditionally(Instruction &I); |
| |
| /// pointerInvalidatedByLoop - Return true if the body of this loop may |
| /// store into the memory location pointed to by V. |
| /// |
| bool pointerInvalidatedByLoop(Value *V, unsigned Size) { |
| // Check to see if any of the basic blocks in CurLoop invalidate *V. |
| return CurAST->getAliasSetForPointer(V, Size).isMod(); |
| } |
| |
| bool canSinkOrHoistInst(Instruction &I); |
| bool isLoopInvariantInst(Instruction &I); |
| bool isNotUsedInLoop(Instruction &I); |
| |
| /// PromoteValuesInLoop - Look at the stores in the loop and promote as many |
| /// to scalars as we can. |
| /// |
| void PromoteValuesInLoop(); |
| |
| /// FindPromotableValuesInLoop - Check the current loop for stores to |
| /// definite pointers, which are not loaded and stored through may aliases. |
| /// If these are found, create an alloca for the value, add it to the |
| /// PromotedValues list, and keep track of the mapping from value to |
| /// alloca... |
| /// |
| void FindPromotableValuesInLoop( |
| std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues, |
| std::map<Value*, AllocaInst*> &Val2AlMap); |
| }; |
| } |
| |
| char LICM::ID = 0; |
| static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion"); |
| |
| Pass *llvm::createLICMPass() { return new LICM(); } |
| |
| /// Hoist expressions out of the specified loop. Note, alias info for inner |
| /// loop is not preserved so it is not a good idea to run LICM multiple |
| /// times on one loop. |
| /// |
| bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) { |
| Changed = false; |
| |
| // Get our Loop and Alias Analysis information... |
| LI = &getAnalysis<LoopInfo>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| DF = &getAnalysis<DominanceFrontier>(); |
| DT = &getAnalysis<DominatorTree>(); |
| |
| CurAST = new AliasSetTracker(*AA); |
| // Collect Alias info from subloops |
| for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end(); |
| LoopItr != LoopItrE; ++LoopItr) { |
| Loop *InnerL = *LoopItr; |
| AliasSetTracker *InnerAST = LoopToAliasMap[InnerL]; |
| assert (InnerAST && "Where is my AST?"); |
| |
| // What if InnerLoop was modified by other passes ? |
| CurAST->add(*InnerAST); |
| } |
| |
| CurLoop = L; |
| |
| // Get the preheader block to move instructions into... |
| Preheader = L->getLoopPreheader(); |
| assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!"); |
| |
| // Loop over the body of this loop, looking for calls, invokes, and stores. |
| // Because subloops have already been incorporated into AST, we skip blocks in |
| // subloops. |
| // |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| if (LI->getLoopFor(BB) == L) // Ignore blocks in subloops... |
| CurAST->add(*BB); // Incorporate the specified basic block |
| } |
| |
| // We want to visit all of the instructions in this loop... that are not parts |
| // of our subloops (they have already had their invariants hoisted out of |
| // their loop, into this loop, so there is no need to process the BODIES of |
| // the subloops). |
| // |
| // Traverse the body of the loop in depth first order on the dominator tree so |
| // that we are guaranteed to see definitions before we see uses. This allows |
| // us to sink instructions in one pass, without iteration. After sinking |
| // instructions, we perform another pass to hoist them out of the loop. |
| // |
| SinkRegion(DT->getNode(L->getHeader())); |
| HoistRegion(DT->getNode(L->getHeader())); |
| |
| // Now that all loop invariants have been removed from the loop, promote any |
| // memory references to scalars that we can... |
| if (!DisablePromotion) |
| PromoteValuesInLoop(); |
| |
| // Clear out loops state information for the next iteration |
| CurLoop = 0; |
| Preheader = 0; |
| |
| LoopToAliasMap[L] = CurAST; |
| return Changed; |
| } |
| |
| /// SinkRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in |
| /// reverse depth first order w.r.t the DominatorTree. This allows us to visit |
| /// uses before definitions, allowing us to sink a loop body in one pass without |
| /// iteration. |
| /// |
| void LICM::SinkRegion(DomTreeNode *N) { |
| assert(N != 0 && "Null dominator tree node?"); |
| BasicBlock *BB = N->getBlock(); |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) return; |
| |
| // We are processing blocks in reverse dfo, so process children first... |
| const std::vector<DomTreeNode*> &Children = N->getChildren(); |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| SinkRegion(Children[i]); |
| |
| // Only need to process the contents of this block if it is not part of a |
| // subloop (which would already have been processed). |
| if (inSubLoop(BB)) return; |
| |
| for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) { |
| Instruction &I = *--II; |
| |
| // Check to see if we can sink this instruction to the exit blocks |
| // of the loop. We can do this if the all users of the instruction are |
| // outside of the loop. In this case, it doesn't even matter if the |
| // operands of the instruction are loop invariant. |
| // |
| if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) { |
| ++II; |
| sink(I); |
| } |
| } |
| } |
| |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in depth |
| /// first order w.r.t the DominatorTree. This allows us to visit definitions |
| /// before uses, allowing us to hoist a loop body in one pass without iteration. |
| /// |
| void LICM::HoistRegion(DomTreeNode *N) { |
| assert(N != 0 && "Null dominator tree node?"); |
| BasicBlock *BB = N->getBlock(); |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) return; |
| |
| // Only need to process the contents of this block if it is not part of a |
| // subloop (which would already have been processed). |
| if (!inSubLoop(BB)) |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) { |
| Instruction &I = *II++; |
| |
| // Try hoisting the instruction out to the preheader. We can only do this |
| // if all of the operands of the instruction are loop invariant and if it |
| // is safe to hoist the instruction. |
| // |
| if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) && |
| isSafeToExecuteUnconditionally(I)) |
| hoist(I); |
| } |
| |
| const std::vector<DomTreeNode*> &Children = N->getChildren(); |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| HoistRegion(Children[i]); |
| } |
| |
| /// canSinkOrHoistInst - Return true if the hoister and sinker can handle this |
| /// instruction. |
| /// |
| bool LICM::canSinkOrHoistInst(Instruction &I) { |
| // Loads have extra constraints we have to verify before we can hoist them. |
| if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { |
| if (LI->isVolatile()) |
| return false; // Don't hoist volatile loads! |
| |
| // Loads from constant memory are always safe to move, even if they end up |
| // in the same alias set as something that ends up being modified. |
| if (EnableLICMConstantMotion && |
| AA->pointsToConstantMemory(LI->getOperand(0))) |
| return true; |
| |
| // Don't hoist loads which have may-aliased stores in loop. |
| unsigned Size = 0; |
| if (LI->getType()->isSized()) |
| Size = AA->getTypeStoreSize(LI->getType()); |
| return !pointerInvalidatedByLoop(LI->getOperand(0), Size); |
| } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { |
| // Handle obvious cases efficiently. |
| AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI); |
| if (Behavior == AliasAnalysis::DoesNotAccessMemory) |
| return true; |
| else if (Behavior == AliasAnalysis::OnlyReadsMemory) { |
| // If this call only reads from memory and there are no writes to memory |
| // in the loop, we can hoist or sink the call as appropriate. |
| bool FoundMod = false; |
| for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); |
| I != E; ++I) { |
| AliasSet &AS = *I; |
| if (!AS.isForwardingAliasSet() && AS.isMod()) { |
| FoundMod = true; |
| break; |
| } |
| } |
| if (!FoundMod) return true; |
| } |
| |
| // FIXME: This should use mod/ref information to see if we can hoist or sink |
| // the call. |
| |
| return false; |
| } |
| |
| // Otherwise these instructions are hoistable/sinkable |
| return isa<BinaryOperator>(I) || isa<CastInst>(I) || |
| isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || |
| isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || |
| isa<ShuffleVectorInst>(I); |
| } |
| |
| /// isNotUsedInLoop - Return true if the only users of this instruction are |
| /// outside of the loop. If this is true, we can sink the instruction to the |
| /// exit blocks of the loop. |
| /// |
| bool LICM::isNotUsedInLoop(Instruction &I) { |
| for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) { |
| Instruction *User = cast<Instruction>(*UI); |
| if (PHINode *PN = dyn_cast<PHINode>(User)) { |
| // PHI node uses occur in predecessor blocks! |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == &I) |
| if (CurLoop->contains(PN->getIncomingBlock(i))) |
| return false; |
| } else if (CurLoop->contains(User->getParent())) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /// isLoopInvariantInst - Return true if all operands of this instruction are |
| /// loop invariant. We also filter out non-hoistable instructions here just for |
| /// efficiency. |
| /// |
| bool LICM::isLoopInvariantInst(Instruction &I) { |
| // The instruction is loop invariant if all of its operands are loop-invariant |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) |
| if (!CurLoop->isLoopInvariant(I.getOperand(i))) |
| return false; |
| |
| // If we got this far, the instruction is loop invariant! |
| return true; |
| } |
| |
| /// sink - When an instruction is found to only be used outside of the loop, |
| /// this function moves it to the exit blocks and patches up SSA form as needed. |
| /// This method is guaranteed to remove the original instruction from its |
| /// position, and may either delete it or move it to outside of the loop. |
| /// |
| void LICM::sink(Instruction &I) { |
| DOUT << "LICM sinking instruction: " << I; |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| if (isa<LoadInst>(I)) ++NumMovedLoads; |
| else if (isa<CallInst>(I)) ++NumMovedCalls; |
| ++NumSunk; |
| Changed = true; |
| |
| LLVMContext &Context = I.getContext(); |
| |
| // The case where there is only a single exit node of this loop is common |
| // enough that we handle it as a special (more efficient) case. It is more |
| // efficient to handle because there are no PHI nodes that need to be placed. |
| if (ExitBlocks.size() == 1) { |
| if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) { |
| // Instruction is not used, just delete it. |
| CurAST->deleteValue(&I); |
| if (!I.use_empty()) // If I has users in unreachable blocks, eliminate. |
| I.replaceAllUsesWith(Context.getUndef(I.getType())); |
| I.eraseFromParent(); |
| } else { |
| // Move the instruction to the start of the exit block, after any PHI |
| // nodes in it. |
| I.removeFromParent(); |
| |
| BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI(); |
| ExitBlocks[0]->getInstList().insert(InsertPt, &I); |
| } |
| } else if (ExitBlocks.empty()) { |
| // The instruction is actually dead if there ARE NO exit blocks. |
| CurAST->deleteValue(&I); |
| if (!I.use_empty()) // If I has users in unreachable blocks, eliminate. |
| I.replaceAllUsesWith(Context.getUndef(I.getType())); |
| I.eraseFromParent(); |
| } else { |
| // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to |
| // do all of the hard work of inserting PHI nodes as necessary. We convert |
| // the value into a stack object to get it to do this. |
| |
| // Firstly, we create a stack object to hold the value... |
| AllocaInst *AI = 0; |
| |
| if (I.getType() != Type::VoidTy) { |
| AI = new AllocaInst(I.getType(), 0, I.getName(), |
| I.getParent()->getParent()->getEntryBlock().begin()); |
| CurAST->add(AI); |
| } |
| |
| // Secondly, insert load instructions for each use of the instruction |
| // outside of the loop. |
| while (!I.use_empty()) { |
| Instruction *U = cast<Instruction>(I.use_back()); |
| |
| // If the user is a PHI Node, we actually have to insert load instructions |
| // in all predecessor blocks, not in the PHI block itself! |
| if (PHINode *UPN = dyn_cast<PHINode>(U)) { |
| // Only insert into each predecessor once, so that we don't have |
| // different incoming values from the same block! |
| std::map<BasicBlock*, Value*> InsertedBlocks; |
| for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i) |
| if (UPN->getIncomingValue(i) == &I) { |
| BasicBlock *Pred = UPN->getIncomingBlock(i); |
| Value *&PredVal = InsertedBlocks[Pred]; |
| if (!PredVal) { |
| // Insert a new load instruction right before the terminator in |
| // the predecessor block. |
| PredVal = new LoadInst(AI, "", Pred->getTerminator()); |
| CurAST->add(cast<LoadInst>(PredVal)); |
| } |
| |
| UPN->setIncomingValue(i, PredVal); |
| } |
| |
| } else { |
| LoadInst *L = new LoadInst(AI, "", U); |
| U->replaceUsesOfWith(&I, L); |
| CurAST->add(L); |
| } |
| } |
| |
| // Thirdly, insert a copy of the instruction in each exit block of the loop |
| // that is dominated by the instruction, storing the result into the memory |
| // location. Be careful not to insert the instruction into any particular |
| // basic block more than once. |
| std::set<BasicBlock*> InsertedBlocks; |
| BasicBlock *InstOrigBB = I.getParent(); |
| |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitBlock = ExitBlocks[i]; |
| |
| if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) { |
| // If we haven't already processed this exit block, do so now. |
| if (InsertedBlocks.insert(ExitBlock).second) { |
| // Insert the code after the last PHI node... |
| BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI(); |
| |
| // If this is the first exit block processed, just move the original |
| // instruction, otherwise clone the original instruction and insert |
| // the copy. |
| Instruction *New; |
| if (InsertedBlocks.size() == 1) { |
| I.removeFromParent(); |
| ExitBlock->getInstList().insert(InsertPt, &I); |
| New = &I; |
| } else { |
| New = I.clone(Context); |
| CurAST->copyValue(&I, New); |
| if (!I.getName().empty()) |
| New->setName(I.getName()+".le"); |
| ExitBlock->getInstList().insert(InsertPt, New); |
| } |
| |
| // Now that we have inserted the instruction, store it into the alloca |
| if (AI) new StoreInst(New, AI, InsertPt); |
| } |
| } |
| } |
| |
| // If the instruction doesn't dominate any exit blocks, it must be dead. |
| if (InsertedBlocks.empty()) { |
| CurAST->deleteValue(&I); |
| I.eraseFromParent(); |
| } |
| |
| // Finally, promote the fine value to SSA form. |
| if (AI) { |
| std::vector<AllocaInst*> Allocas; |
| Allocas.push_back(AI); |
| PromoteMemToReg(Allocas, *DT, *DF, Context, CurAST); |
| } |
| } |
| } |
| |
| /// hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void LICM::hoist(Instruction &I) { |
| DEBUG(errs() << "LICM hoisting to " << Preheader->getName() << ": " << I); |
| |
| // Remove the instruction from its current basic block... but don't delete the |
| // instruction. |
| I.removeFromParent(); |
| |
| // Insert the new node in Preheader, before the terminator. |
| Preheader->getInstList().insert(Preheader->getTerminator(), &I); |
| |
| if (isa<LoadInst>(I)) ++NumMovedLoads; |
| else if (isa<CallInst>(I)) ++NumMovedCalls; |
| ++NumHoisted; |
| Changed = true; |
| } |
| |
| /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is |
| /// not a trapping instruction or if it is a trapping instruction and is |
| /// guaranteed to execute. |
| /// |
| bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) { |
| // If it is not a trapping instruction, it is always safe to hoist. |
| if (Inst.isSafeToSpeculativelyExecute()) |
| return true; |
| |
| // Otherwise we have to check to make sure that the instruction dominates all |
| // of the exit blocks. If it doesn't, then there is a path out of the loop |
| // which does not execute this instruction, so we can't hoist it. |
| |
| // If the instruction is in the header block for the loop (which is very |
| // common), it is always guaranteed to dominate the exit blocks. Since this |
| // is a common case, and can save some work, check it now. |
| if (Inst.getParent() == CurLoop->getHeader()) |
| return true; |
| |
| // Get the exit blocks for the current loop. |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| |
| // For each exit block, get the DT node and walk up the DT until the |
| // instruction's basic block is found or we exit the loop. |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) |
| if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent())) |
| return false; |
| |
| return true; |
| } |
| |
| |
| /// PromoteValuesInLoop - Try to promote memory values to scalars by sinking |
| /// stores out of the loop and moving loads to before the loop. We do this by |
| /// looping over the stores in the loop, looking for stores to Must pointers |
| /// which are loop invariant. We promote these memory locations to use allocas |
| /// instead. These allocas can easily be raised to register values by the |
| /// PromoteMem2Reg functionality. |
| /// |
| void LICM::PromoteValuesInLoop() { |
| // PromotedValues - List of values that are promoted out of the loop. Each |
| // value has an alloca instruction for it, and a canonical version of the |
| // pointer. |
| std::vector<std::pair<AllocaInst*, Value*> > PromotedValues; |
| std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca |
| |
| FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap); |
| if (ValueToAllocaMap.empty()) return; // If there are values to promote. |
| |
| Changed = true; |
| NumPromoted += PromotedValues.size(); |
| |
| std::vector<Value*> PointerValueNumbers; |
| |
| // Emit a copy from the value into the alloca'd value in the loop preheader |
| TerminatorInst *LoopPredInst = Preheader->getTerminator(); |
| for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) { |
| Value *Ptr = PromotedValues[i].second; |
| |
| // If we are promoting a pointer value, update alias information for the |
| // inserted load. |
| Value *LoadValue = 0; |
| if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) { |
| // Locate a load or store through the pointer, and assign the same value |
| // to LI as we are loading or storing. Since we know that the value is |
| // stored in this loop, this will always succeed. |
| for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end(); |
| UI != E; ++UI) |
| if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) { |
| LoadValue = LI; |
| break; |
| } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) { |
| if (SI->getOperand(1) == Ptr) { |
| LoadValue = SI->getOperand(0); |
| break; |
| } |
| } |
| assert(LoadValue && "No store through the pointer found!"); |
| PointerValueNumbers.push_back(LoadValue); // Remember this for later. |
| } |
| |
| // Load from the memory we are promoting. |
| LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst); |
| |
| if (LoadValue) CurAST->copyValue(LoadValue, LI); |
| |
| // Store into the temporary alloca. |
| new StoreInst(LI, PromotedValues[i].first, LoopPredInst); |
| } |
| |
| // Scan the basic blocks in the loop, replacing uses of our pointers with |
| // uses of the allocas in question. |
| // |
| for (Loop::block_iterator I = CurLoop->block_begin(), |
| E = CurLoop->block_end(); I != E; ++I) { |
| BasicBlock *BB = *I; |
| // Rewrite all loads and stores in the block of the pointer... |
| for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { |
| if (LoadInst *L = dyn_cast<LoadInst>(II)) { |
| std::map<Value*, AllocaInst*>::iterator |
| I = ValueToAllocaMap.find(L->getOperand(0)); |
| if (I != ValueToAllocaMap.end()) |
| L->setOperand(0, I->second); // Rewrite load instruction... |
| } else if (StoreInst *S = dyn_cast<StoreInst>(II)) { |
| std::map<Value*, AllocaInst*>::iterator |
| I = ValueToAllocaMap.find(S->getOperand(1)); |
| if (I != ValueToAllocaMap.end()) |
| S->setOperand(1, I->second); // Rewrite store instruction... |
| } |
| } |
| } |
| |
| // Now that the body of the loop uses the allocas instead of the original |
| // memory locations, insert code to copy the alloca value back into the |
| // original memory location on all exits from the loop. Note that we only |
| // want to insert one copy of the code in each exit block, though the loop may |
| // exit to the same block more than once. |
| // |
| SmallPtrSet<BasicBlock*, 16> ProcessedBlocks; |
| |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| CurLoop->getExitBlocks(ExitBlocks); |
| for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { |
| if (!ProcessedBlocks.insert(ExitBlocks[i])) |
| continue; |
| |
| // Copy all of the allocas into their memory locations. |
| BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI(); |
| Instruction *InsertPos = BI; |
| unsigned PVN = 0; |
| for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) { |
| // Load from the alloca. |
| LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos); |
| |
| // If this is a pointer type, update alias info appropriately. |
| if (isa<PointerType>(LI->getType())) |
| CurAST->copyValue(PointerValueNumbers[PVN++], LI); |
| |
| // Store into the memory we promoted. |
| new StoreInst(LI, PromotedValues[i].second, InsertPos); |
| } |
| } |
| |
| // Now that we have done the deed, use the mem2reg functionality to promote |
| // all of the new allocas we just created into real SSA registers. |
| // |
| std::vector<AllocaInst*> PromotedAllocas; |
| PromotedAllocas.reserve(PromotedValues.size()); |
| for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) |
| PromotedAllocas.push_back(PromotedValues[i].first); |
| PromoteMemToReg(PromotedAllocas, *DT, *DF, Preheader->getContext(), CurAST); |
| } |
| |
| /// FindPromotableValuesInLoop - Check the current loop for stores to definite |
| /// pointers, which are not loaded and stored through may aliases and are safe |
| /// for promotion. If these are found, create an alloca for the value, add it |
| /// to the PromotedValues list, and keep track of the mapping from value to |
| /// alloca. |
| void LICM::FindPromotableValuesInLoop( |
| std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues, |
| std::map<Value*, AllocaInst*> &ValueToAllocaMap) { |
| Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin(); |
| |
| // Loop over all of the alias sets in the tracker object. |
| for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end(); |
| I != E; ++I) { |
| AliasSet &AS = *I; |
| // We can promote this alias set if it has a store, if it is a "Must" alias |
| // set, if the pointer is loop invariant, and if we are not eliminating any |
| // volatile loads or stores. |
| if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || |
| AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue())) |
| continue; |
| |
| assert(!AS.empty() && |
| "Must alias set should have at least one pointer element in it!"); |
| Value *V = AS.begin()->getValue(); |
| |
| // Check that all of the pointers in the alias set have the same type. We |
| // cannot (yet) promote a memory location that is loaded and stored in |
| // different sizes. |
| { |
| bool PointerOk = true; |
| for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I) |
| if (V->getType() != I->getValue()->getType()) { |
| PointerOk = false; |
| break; |
| } |
| if (!PointerOk) |
| continue; |
| } |
| |
| // It isn't safe to promote a load/store from the loop if the load/store is |
| // conditional. For example, turning: |
| // |
| // for () { if (c) *P += 1; } |
| // |
| // into: |
| // |
| // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; |
| // |
| // is not safe, because *P may only be valid to access if 'c' is true. |
| // |
| // It is safe to promote P if all uses are direct load/stores and if at |
| // least one is guaranteed to be executed. |
| bool GuaranteedToExecute = false; |
| bool InvalidInst = false; |
| for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); |
| UI != UE; ++UI) { |
| // Ignore instructions not in this loop. |
| Instruction *Use = dyn_cast<Instruction>(*UI); |
| if (!Use || !CurLoop->contains(Use->getParent())) |
| continue; |
| |
| if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) { |
| InvalidInst = true; |
| break; |
| } |
| |
| if (!GuaranteedToExecute) |
| GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use); |
| } |
| |
| // If there is an non-load/store instruction in the loop, we can't promote |
| // it. If there isn't a guaranteed-to-execute instruction, we can't |
| // promote. |
| if (InvalidInst || !GuaranteedToExecute) |
| continue; |
| |
| const Type *Ty = cast<PointerType>(V->getType())->getElementType(); |
| AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart); |
| PromotedValues.push_back(std::make_pair(AI, V)); |
| |
| // Update the AST and alias analysis. |
| CurAST->copyValue(V, AI); |
| |
| for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I) |
| ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI)); |
| |
| DOUT << "LICM: Promoting value: " << *V << "\n"; |
| } |
| } |
| |
| /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. |
| void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) { |
| AliasSetTracker *AST = LoopToAliasMap[L]; |
| if (!AST) |
| return; |
| |
| AST->copyValue(From, To); |
| } |
| |
| /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias |
| /// set. |
| void LICM::deleteAnalysisValue(Value *V, Loop *L) { |
| AliasSetTracker *AST = LoopToAliasMap[L]; |
| if (!AST) |
| return; |
| |
| AST->deleteValue(V); |
| } |